精英家教网 > 高中数学 > 题目详情
12.已知(x-1)n的展开式中奇数项的二项式系数之和是64,则它的展开式的中间项为(  )
A.-35x4B.35x3C.-35x4和35x3D.-35x3和35x4

分析 由题意利用二项式系数的性质求得n=7,利用二项展开式的通项公式,即可求得展开式的中间项.

解答 解:由题意可得2n-1=64,∴n=7.
故(x-1)7的展开式的中间项为T3+1=C73•x3•(-1)3=-35x3,T4+1=C74•x4•(-1)4=35x4
故选:D.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.点A(1,7)是锐角α终边上的一点,锐角β满足sinβ=$\frac{\sqrt{5}}{5}$,
(1)求tan(α+β)的值;
(2)求α+2β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设△ABC内角A,B,C的对边分别为a,b,c,已知a=$\sqrt{3}$+1,c=2,A+C=2B.求:
(1)边b的长;
(2)cosA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\frac{a}{x}$-x,对?x∈(0,1),有f(x)•f(1-x)≥1恒成立,则实数a的取值范围为a≥1或a$≤-\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{\frac{3x-1}{x+3}(x≠-3)}\\{a(x=-3)}\end{array}\right.$的定义域与值域相同,则常数α=(  )
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=1,|2$\overrightarrow{a}$+$\overrightarrow{b}$|=2$\sqrt{3}$,则|b|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的图象如图所示.试确定该函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数列{an}的前n项和为Sn,满足Sn=nan+1,且a1=1,则Sn=n!.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.椭圆C的中心在坐标原点,右焦点为$F(\sqrt{3},0)$,点F到短轴的一个端点的距离等于焦距.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C与曲线|y|=kx(k>0)的交点为A,B,求△OAB面积的最大值.

查看答案和解析>>

同步练习册答案