精英家教网 > 高中数学 > 题目详情

【题目】一个透明密闭的正方体容器中,恰好盛有该容器一半容积的水,任意转动这个正方体,则水面在容器中的形状可以是:(1)三角形;(2)长方形;(3)正方形;(4)正六边形.其中正确的结论是____________.(把你认为正确的序号都填上)

【答案】2)(3)(4

【解析】

逐一判断形状即可.

试题解:正方体容器中盛有一半容积的水,无论怎样转动,其水面总是过正方体的中心.三角形截面不过正方体的中心,故(1)不正确;

过正方体的一对棱和中心可作一截面,截面形状为长方形,故(2)正确;

过正方体四条互相平行的棱的中点得截面形状为正方形,该截面过正方体的中心,故(3)正确;

过正方体一面上相邻两边的中点以及正方体的中心得截面形状为正六边形,故(4)正确.

故答案为(2)(3)(4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018年3月3日至20日中华人民共和国第十三届全国人民代表大会第一次会议和中国人民政治协商会议第十三届全国委员会第一次会议在北京胜利召开,两会是年度中国政治生活中的一件大事,受到了举国上下和全世界的广泛关注.为及时宣传国家政策,贯彻两会精神,某校举行了全国两会知识竞赛,为了解本次竞赛成绩情况,随机抽取了部分学生的成绩(得分均为整数,满分分,最低分不低于分)进行统计,得出频率分布表如下:

组号

分组

频数

频率

第1组

第2组

第3组

第4组

第5组

合计

(1)求表中的值;

(2)若从成绩较好的第组中用分层抽样的方法抽取人担任两会知识宣传员,再从这人中随机选出人负责整理两会相关材料,求这人中至少有人来自第组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列的首项是1,公比为3,等差数列的首项是,公差为1,把中的各项按如下规则依次插入到的每相邻两项之间,构成新数列,…,即在两项之间依次插入个项,则__________.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,且,圆轴交于点为椭圆上的动点,面积最大值为.

(1)求圆与椭圆的方程;

(2)圆的切线交椭圆于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面几何中,研究三角形内任意一点与三边的关系时,有真命题:边长为的正三角形内任意一点到各边的距离之和是定值。类比上述命题,请写出关于正四面体内任意一点与四个面的关系的一个真命题,并给出证明。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,且,圆轴交于点为椭圆上的动点,面积最大值为.

(1)求圆与椭圆的方程;

(2)圆的切线交椭圆于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)记函数的极值点为,若,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运动健康已成为大家越来越关心的话题,某公司开发的一个类似计步数据库的公众号.手机用户可以通过关注该公众号查看自己每天行走的步数,同时也可以和好友进行运动量的PK和点赞.现从张华的好友中随机选取40人(男、女各20人),记录他们某一天行走的步数,并将数据整理如表:

步数

性别

02000

20015000

50018000

800110000

10000

1

2

4

7

6

0

3

9

6

2

1)若某人一天行走的步数超过8000步被评定为“积极型”,否则被评定为“懈怠型”,根据题意完成下列2×2列联表,并据此判断能否有90%的把握认为男、女的“评定类型”有差异?

积极型

懈怠型

总计

总计

2)在张华的这40位好友中,从该天行走的步数不超过5000步的人中随机抽取2人,设抽取的女性有X人,求X=1时的概率.

参考公式与数据:

PK2k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2=,其中n=a+b+c+d

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一条小河岸边有相距两个村庄(村庄视为岸边上两点),在小河另一侧有一集镇(集镇视为点),到岸边的距离,河宽,通过测量可知,的正切值之比为.当地政府为方便村民出行,拟在小河上建一座桥分别为两岸上的点,且垂直河岸,的左侧),建桥要求:两村所有人到集镇所走距离之和最短,已知两村的人口数分别是人、人,假设一年中每人去集镇的次数均为次.设.(小河河岸视为两条平行直线)

(1)记为一年中两村所有人到集镇所走距离之和,试用表示

(2)试确定的余弦值,使得最小,从而符合建桥要求.

查看答案和解析>>

同步练习册答案