精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=ax2-2x+2.
(1)若f(x)的单调区间为(-∞,4),求a的取值范围;
(2)若f(x)在区间(-∞,4)上为减函数,求a的取值范围.

分析 (1)f(x)的单调区间为(-∞,4),则函数图象是以直线x=4为对称轴的抛物线,进而得到a值;
(2)若f(x)在区间(-∞,4)上为减函数,分a=0和a≠0两种情况,结合一次函数和二次函数的图象和性质,可得a的取值范围.

解答 解:(1)∵函数f(x)=ax2-2x+2,
若f(x)的单调区间为(-∞,4),
则函数图象是以直线x=4为对称轴的抛物线,
即$\frac{1}{a}$=4,
解得:a=$\frac{1}{4}$
(2)∵若a=0,则函数f(x)=-2x+2在区间(-∞,4)上为减函数,满足条件;
若a≠0,由二次函数f(x)在区间(-∞,4)上为减函数,
∴a>0,且$\frac{1}{a}$≥4解得:a∈(0,$\frac{1}{4}$]
综上所述,满足条件的a的取值范围为[0,$\frac{1}{4}$]

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x3-3ax+1有3个零点,则a的取值范围为(  )
A.(0,$\frac{\sqrt{2}}{2}$)B.($\frac{\sqrt{2}}{2}$,+∞)C.(0,$\frac{\sqrt{2}}{2}$)D.($\frac{\root{3}{2}}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.考虑一元二次方程x2+Bx+C=0,其中B、C分别是将一枚骰子接连抛掷两次先后出现的点数,求该方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.数列{an}中,a1=2,a2=-1,${a}_{n}^{2}$=an+1•an-1(n≥2),则an=$(-1)^{n-1}•\frac{1}{{2}^{n-2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知映射f:A→B,其中A=B=R,对应关系是f:x→y=x2-2x+2,若对实数k∈B,在集合A中没有原像与之对应,则k的取值范围是(  )
A.(-∞,1]B.(-∞,1)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.作出y=|x2+2x-8|的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设f(x)=${C}_{20}^{10-x}$,g(x)=${P}_{20}^{x}$,集合A={x||x|≤10,x∈Z},B={x|1≤x≤20,x∈N*}.
(1)若f(x)的定义域为A,判断f(x)的奇偶性
(2)解方程f(6-x)=f(2x-15)
(3)若g(x)的定义域为B,求证:当1≤x≤19时,g(x)是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知a>0,求a+a3+a5+…+a2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=a2x+4•ax-5(a>0,且a≠1).
(1)当a=3时,求f(x)的值域;
(2)若对任意的x∈(0,+∞),f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案