分析 设直线l与直线y=2x相交于E(t,2t).可得直线l的方程为:y-2t=t(x-t).利用点到直线的距离公式可得点(-2,2)到直线l的距离d.通过变形利用基本不等式即可得出结论.
解答 解:设直线l与直线y=2x相交于E(t,2t).
则直线l的方程为:y-2t=t(x-t),化为tx-y+2t-t2=0.
点(-2,2)到直线l的距离d=$\frac{|-2t-2+2t-{t}^{2}|}{\sqrt{{t}^{2}+1}}$=$\sqrt{{t}^{2}+1}$+$\frac{1}{\sqrt{{t}^{2}+1}}$≥2,当且仅当t=0时取等号.
∴直线l的方程是y=0.
故答案为:y=0.
点评 本题考查了直线的交点、点到直线的距离公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源:2017届湖南衡阳县四中高三9月月考数学(文)试卷(解析版) 题型:选择题
已知复数
满足
(
为虚数单位),则
在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,e] | B. | $(1+\frac{1}{e},e]$ | C. | (1,e] | D. | $[1+\frac{1}{e},e]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com