精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=x2ex+lnt-a,若对任意的t∈[1,e],f(x)在区间[-1,1]总存在唯一的零点,则实数a的取值范围是(  )
A.[1,e]B.$(1+\frac{1}{e},e]$C.(1,e]D.$[1+\frac{1}{e},e]$

分析 根据导数求出函数的最值,再根据存在唯一的x0∈[-1,1],使得f(x0)=-lnt+a在t∈[1,e]上恒成立,得到$\frac{1}{e}$≤f(x0)≤e,即$\frac{1}{e}$≤-lnt+a≤e,得到关于a的不等式组,解得即可.

解答 解:函数f(x)=x2ex+lnt-a的导数为f′(x)=2xex+x2ex =xex(x+2),x∈[-1,1],
令f′(x)=0,则x=0,
当f′(x)>0时,即0<x≤1,当f′(x)<0时,即-1≤x<0,
∴f(x)在(-1,0)单调递减,在(0,1]上单调递增,
∴f(x)min=f(0)=0,f(-1)=$\frac{1}{e}$,f(1)=e,
∴f(x)max=f(1)=e,
∵存在唯一的x0∈[-1,1],使得f(x0)=-lnt+a在t∈[1,e]上恒成立,
∴$\frac{1}{e}$≤f(x0)≤e,
∴$\frac{1}{e}$≤-lnt+a≤e,
∵-lnt+a在t∈[1,e]上恒成立,
∴$\left\{\begin{array}{l}{;-1+a>\frac{1}{e}}\\{a≤e}\end{array}\right.$,
解得1+$\frac{1}{e}$<a≤e,
故选:B

点评 本题考查了导数函数的最值问题,以及参数的取值范围,考查了存在性和恒成立的问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的(  )
A.充分条件B.必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:2017届湖南衡阳县四中高三9月月考数学(文)试卷(解析版) 题型:选择题

已知函数,函数定义域为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设集合L={l|直线l与直线y=2x相交,且以交点的横坐标为斜率},若点(-2,2)到集合L中直线l的距离最小,则直线l的方程是y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若一个几何体的三视图如下图所示,则这个几何体是(  )
A.三棱锥B.四棱锥C.三棱柱D.四棱柱

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知棱长为2的正方体ABCD-A1B1C1D1,球O与该正方体的各个面相切,则平面ACB1截此球所得的截面的面积为(  )
A.$\frac{8π}{3}$B.$\frac{5π}{3}$C.$\frac{4π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$过点$({1,\frac{3}{2}})$,直线l:y=kx+1(k≠0)与椭圆E交于A,B两点,当k=1时,椭圆E的右焦点到直线l的距离为$\sqrt{2}$.
(1)求椭圆E的方程;
(2)设点A关于y轴的对称点为A',试问:直线A'B是否恒过y轴上的一个定点?若是,求出定点坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在边长是2的正方体ABCD-A1B1C1D1中,E,F分别为AB,A1C的中点.
(Ⅰ)证明:EF∥平面ADD1A1
(Ⅱ)求二面角A1-EC-D大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)是定义在R上的偶函数,当x≥0时,$f(x)=\left\{\begin{array}{l}\frac{3}{2}cos\frac{π}{2}(1-x),0≤x≤1\\{(\frac{1}{2})^x}+1,x>1\end{array}\right.$,若函数g(x)=5[f(x)]2-(5a+6)f(x)+6a(a∈R)有且仅有6个不同的零点,则实数a的取值范围(  )
A.$(0,1]∪\left\{{\frac{3}{2}}\right\}$B.$(0,\frac{3}{2}]$C.$(0,1)∪\left\{{\frac{3}{2}}\right\}$D.$(0,\frac{3}{2})∪\left\{0\right\}$

查看答案和解析>>

同步练习册答案