精英家教网 > 高中数学 > 题目详情
1.已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0,若直线l被圆C截得的弦长最短,则m的值为-$\frac{3}{4}$.

分析 由于直线过定点M(3,1),点M在圆C:(x-1)2+(y-2)2=25的内部,故直线被圆截得的弦长最短时,CM垂直于直线l,根据它们的斜率之积等于-1求出m的值.

解答 解:直线l:(2m+1)x+(m+1)y-7m-4=0 即(x+y-4)+m(2x+y-7)=0,过定点M(3,1),
由于点M在圆C:(x-1)2+(y-2)2=25的内部,故直线被圆截得的弦长最短时,CM垂直于直线l,
故它们的斜率之积等于-1,即$\frac{1-2}{3-1}×(-\frac{2m+1}{m+1})$=-1,解得m=-$\frac{3}{4}$,
故答案为:-$\frac{3}{4}$.

点评 本题主要考查直线和圆的位置关系,直线过定点问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设集合L={l|直线l与直线y=2x相交,且以交点的横坐标为斜率},若点(-2,2)到集合L中直线l的距离最小,则直线l的方程是y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在边长是2的正方体ABCD-A1B1C1D1中,E,F分别为AB,A1C的中点.
(Ⅰ)证明:EF∥平面ADD1A1
(Ⅱ)求二面角A1-EC-D大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥P-ABCD中,O为AD的中点,AD∥BC,CD⊥平面PAD,PA=PD=5.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)若AD=8,BC=4,CD=3,求平面PAB与平面PCD所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$与抛物线y2=4x的交点为A,B,且直线AB过双曲线与抛物线的公共焦点F,则双曲线的实轴长为(  )
A.$\sqrt{2}$+1B.$\sqrt{3}$C.$\sqrt{2}$-1D.2$\sqrt{2}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若角α的终边与单位圆的交点为$P(\frac{12}{13},-\frac{5}{13})$,则tanα=(  )
A.$\frac{5}{12}$B.$-\frac{5}{12}$C.$-\frac{12}{5}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)是定义在R上的偶函数,当x≥0时,$f(x)=\left\{\begin{array}{l}\frac{3}{2}cos\frac{π}{2}(1-x),0≤x≤1\\{(\frac{1}{2})^x}+1,x>1\end{array}\right.$,若函数g(x)=5[f(x)]2-(5a+6)f(x)+6a(a∈R)有且仅有6个不同的零点,则实数a的取值范围(  )
A.$(0,1]∪\left\{{\frac{3}{2}}\right\}$B.$(0,\frac{3}{2}]$C.$(0,1)∪\left\{{\frac{3}{2}}\right\}$D.$(0,\frac{3}{2})∪\left\{0\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,若输入a0=0,a1=1,a2=2,a3=3,a4=4,a5=5,x0=-1,则输出v的值为(  )
A.15B.3C.-3D.-15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在四棱锥P-ABCD中,$∠DBA=\frac{π}{2}$,$AB\underline{\underline∥}CD$,△PAB和△PBD都是边长为2的等边三角形,设P在底面ABCD的射影为O.
(1)求证:O是AD中点;
(2)证明:BC⊥PB;
(3)求点A到面PBC的距离.

查看答案和解析>>

同步练习册答案