精英家教网 > 高中数学 > 题目详情
6.若角α的终边与单位圆的交点为$P(\frac{12}{13},-\frac{5}{13})$,则tanα=(  )
A.$\frac{5}{12}$B.$-\frac{5}{12}$C.$-\frac{12}{5}$D.$\frac{12}{5}$

分析 x=$\frac{12}{13}$,y=-$\frac{5}{13}$,根据任意角的三角函数的定义可得结论.

解答 解:由题意,x=$\frac{12}{13}$,y=-$\frac{5}{13}$,tanα=$\frac{y}{x}$=-$\frac{5}{12}$.
故选B.

点评 本题考查任意角的三角函数的定义,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图1,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到图22中△A1BE的位置,得到四棱锥A1-BCDE.
(文、理科)证明:CD⊥平面A1OC;
(理科) 若平面A1BE⊥平面BCDE,求二面角D-A1C-B的余弦值.
(文科) 若平面A1BE⊥平面BCDE,求二面角A1-DC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,侧面PAB⊥底面ABCD,△PAB为正三角形.AB⊥AD,CD⊥AD,点E、M为线段BC、AD的中点,F,G分别为线段PA,AE上一点,且AB=AD=2,PF=2FA.
(1)确定点G的位置,使得FG∥平面PCD;
(2)试问:直线CD上是否存在一点Q,使得平面PAB与平面PMQ所成锐二面角的大小为30°,若存在,求DQ的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1558石,验得米内夹谷,抽样取米一把,数得381粒内夹谷42粒,则这批米内夹谷约为(  )
A.146石B.172石C.341石D.1358石

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0,若直线l被圆C截得的弦长最短,则m的值为-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数$f(x)=\frac{a}{2}sinx+\frac{b}{3}tanx+2cos\frac{π}{3}$,且f(2)=-1,则f(-2)=(  )
A.3B.2C.0D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$cos(π+α)=\frac{4}{5}$,且tanα>0.
(1)由tanα的值;
(2)求$\frac{{2sin(π-α)+sin(\frac{π}{2}-α)}}{{cos(-α)+4cos(\frac{π}{2}+α)}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.将函数y=sinx的图象向左平移$\frac{π}{4}$个单位,再将所得图象上各点的横坐标缩为原来的$\frac{1}{2}$,纵坐标不变,便得到函数f(x)的图象,则f(x)解析式为$f(x)=sin({2x+\frac{π}{4}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线l交椭圆于A,B两点,△ABF1的周长为8,且△AF1F2的面积的最大时,△AF1F2为正三角形.
(1)求椭圆C的方程;
(2)若是椭圆C经过原点的弦,MN∥AB,求证:$\frac{|MN{|}^{2}}{|AB|}$为定值.

查看答案和解析>>

同步练习册答案