【题目】关于的说法,正确的是( )
A.展开式中的二项式系数之和为2048
B.展开式中只有第6项的二项式系数最大
C.展开式中第6项和第7项的二项式系数最大
D.展开式中第6项的系数最小
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=4x,其焦点为F,直线过点P(﹣2,0)
(1)若直线l与抛物线C有且仅有一个公共点,求l的方程;
(2)若直线l与抛物线交于不同的两点A、B,求|FA|+|FB|的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦点与双曲线的焦点重合,过椭圆C的右顶点B任作一条直线,交抛物线于A,B两点,且,
(1)试求椭圆C的方程;
(2)过椭圆的右焦点且垂直于轴的直线交椭圆于两点,M,N是椭圆上位于直线两侧的两点.若,求证:直线MN的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆O:,直线l:.
(1)若直线l与圆O相切,求k的值;
(2)若直线l与圆O交于不同的两点A,B,当为锐角时,求k的取值范围;
(3)若,P是直线l上的动点,过P作圆O的两条切线PC,PD,切点为C,D,探究:直线CD是否过定点,若过定点,则求出该定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是平行四边形,,侧面底面,,.
(Ⅰ)求证:平面面;
(Ⅱ)过的平面交于点,若平面把四面体分成体积相等的两部分,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,D是AC的中点,四边形BDEF是菱形,平面平面ABC,,,.
若点M是线段BF的中点,证明:平面AMC;
求平面AEF与平面BCF所成的锐二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com