精英家教网 > 高中数学 > 题目详情
(2010•石家庄二模)已知四棱锥S-ABCD,底面是边长为1的正方形,SD⊥底面ABCD,SD=
3
,E
为AB上的一个动点,则SE+CE的最小值为(  )
分析:设AE=x,则BE=1-x,SE+CE表示平面内的动点到A(0,2)与B(1,1)的距离和,取B(1,1)关于x轴的对称点B′(1,-1),则可求SE+CE的最小值.
解答:解:设AE=x,则BE=1-x
SE=
x2+4
,CE=
(x-1)2+1

SE+CE=
x2+4
+
(x-1)2+1

如右图所示,则SE+CE表示在x轴上的点到A(0,2)与B(1,1)的距离和
取B(1,1)关于x轴的对称点B′(1,-1)
则SE+CE的最小值为AB′=
(0-1)2+(2+1)2
=
10

故选B.
点评:本题以四棱锥S-ABCD为载体,考查线段和的最小值,解题的关键是表示出距离的和,利用对称性求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•石家庄二模)已知定义域为R的函数f(x)在(1,+∞)上为减函数,且函数y=f(x+1)为偶函数,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•石家庄二模)若函数y=f(x)的图象如图①所示,则图②对应函数的解析式可以表示为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•石家庄二模)已知△ABC中,内角A、B、C的对边的边长为a、b、c,且bcosC=(2a-c)cosB.
(Ⅰ)求角B的大小;
(Ⅱ)若y=cos2A+cos2C,求y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•石家庄二模)已知动圆M经过点G(0,-1),且与圆Q:x2+(y-1)2=8内切.
(Ⅰ)求动圆M的圆心的轨迹E的方程.
(Ⅱ)以m=(1,
2
)
为方向向量的直线l交曲线E于不同的两点A、B,在曲线E上是否存在点P使四边形OAPB为平行四边形(O为坐标原点).若存在,求出所有的P点的坐标与直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•石家庄二模)如图,已知全集为U,A,B是U的两个子集,则阴影部分所表示的集合是(  )

查看答案和解析>>

同步练习册答案