| A. | 锐角三角形 | B. | 直角三角形 | ||
| C. | 等腰三角形 | D. | 等腰或直角三角形 |
分析 先利用三角函数的和角公式化左边=2R(sinAcosB-cosAsinB),再利用余弦化成三角形边的关系化简已知等式“(a2+b2)sin(A-B)=(a2-b2)sinC”,得到a2=b2或a2+b2=c2,从而得出该三角形是等腰三角形或直角三角形.
解答 解:∵$\frac{sin(A-B)}{sinC}$=$\frac{{{a^2}-{b^2}}}{{{a^2}+{b^2}}}$,
∴可得:(a2+b2)sin(A-B)=(a2-b2)sin C,
∵2Rsin(A-B)=2R(sinAcosB-cosAsinB)=2RsinAcosB-2RsinBcosA=a•$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$-b•$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{{a}^{2}-{b}^{2}}{c}$,
∴已知等式变形得:(a2+b2)•$\frac{{a}^{2}-{b}^{2}}{2Rc}$=(a2-b2)•$\frac{c}{2R}$,
∴a2=b2或a2+b2=c2,
则△ABC是等腰三角形或直角三角形.
故选:D.
点评 此题考查了正弦、余弦定理,以及特殊角的三角函数值,考查了转化思想,熟练掌握余弦定理是解本题的关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 13 | B. | 10.5 | C. | 10 | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com