精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn=10n-n2(n∈N*).
(I)求数列{an}的通项公式;
(II)求Sn的最大值;
(III)设bn=|an|,求数列{bn}的前n项和Tn
分析:(I)由已知可知,a1=s1,当n≥2 时,an=Sn-Sn-1可求an,然后检验a1=S1是否适合上式,从而可求通项
(II)解法1:由等差数列的求和公式求出sn,结合二次函数的性质可求sn取得最大值
解法2:先求出满足an>0的n的范围,结合数列项的正负可判断sn取得最大值
(III) 令an=11-2n≥0,解出n的范围,然后可得Tn=b1+b2+…+bn=|a1|+|a2|+…+|an|,结合数列项的正负去掉绝对值符合,然后结合等差数列的求和公式即可求解
解答:解:(I)当n=1时,a1=s1=9;-------------(1分)
当n≥2 时,an=Sn-Sn-1=10n-n2-[10(n-1)-(n-1)2]=11-2n,-----(3分)
n=1 时,a1=S1=9 也适合上式
∴an=11-2n(n∈N*).-------------(4分)
(II)解法1:sn=10n-n2=-(n-5)2+25,-------------(6分)
所以,当n=5时,sn取得最大值25.-------------(7分)
解法2:令an=11-2n≥0,得n
11
2

即此等差数列前5项为正数,从第6项起开始为负数,
所以,s5最大,-------------(6分)
故(Snmax=s5=25.-------------(7分)
(III) 令an=11-2n≥0,得n
11
2
.-------------(8分)
Tn=b1+b2+…+bn=|a1|+|a2|+…+|an|
当n≤5时,an>0,bn=an,Tn=a1+a2+…+an=Sn=10n-n2,-------------(9分)
当n>5 时,an<0,bn=-an,Tn=(a1+a2+a3+a4+a5)-(a6+a7+…an)=2S5-Sn=n2-10n+50-------------(11分)
综上可知,数列{bn}的前n项和Tn=
10n-n2,n≤5
50-10n+n2,n>5
.-------(12分)
点评:本题考查等差数列的前n项和的计算,公式法和分组求和法.bn=|an|含有绝对值符号,所以还要进行分类讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案