精英家教网 > 高中数学 > 题目详情
已知点A(-1,-2,1),B(2,2,2),点P在Z轴上,且点P到A,B的距离相等,则点P的坐标为
 
考点:空间向量的夹角与距离求解公式
专题:空间位置关系与距离
分析:设P(0,0,z).由于点P到A,B的距离相等,可得
12+22+(z-1)2
=
22+22+(2-z)2
,解出即可.
解答: 解:设P(0,0,z).
∵点P到A,B的距离相等,
12+22+(z-1)2
=
22+22+(2-z)2

化为2z=6,解得z=3.
∴点P的坐标(0,0,3).
故答案为:(0,0,3).
点评:本题考查了两点之间的距离公式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知抛线C:x2=4y,过点M(0,2)任作一直线与C相交于A,B两点,过点B作y轴的平行线与直线AO相交于点D(O为坐标原点).
(Ⅰ)求D的纵坐标y0的值;
(Ⅱ)作C的任意一条切线l(不含x轴),与直线y=2相交于点N1,与直线y=y0相交于点N2.求|MN2|2-|MN1|2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(ax-
x
)(a>0,a≠1为常数).
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)若a=2,x∈[1,9],求函数f(x)的值域;
(Ⅲ)若函数y=af(x)的图象恒在直线y=-2x+1的上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程x 2+mx+1=0有两个不相等的实根;q:?x∈R,4x2+4(m-2)x+1>0;
(1)若p为真,求实数m的取值范围;
(2)若q为真,求实数m的取值范围;
(3)若p或q为真,p且q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面是正方形的四棱锥P-ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为EC中点.
(1)求证:FG∥平面PBD;
(2)当二面角B-PC-D的大小为
3
时,求FG与平面PCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中的内角A、B、C所对的边分别为a,b,c,若b=2ccosA,c=2bcosA,则△ABC的形状为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,a=2,b=2
3
,∠B=60°,则sinA=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个内角A,B,C的对边依次是a,b,c,且A=30°,a=1.
(Ⅰ)若B=45°,求b的大小;
(Ⅱ)若sinC=sin(B-A),求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在坐标平面内,与原点距离为1,且与点(2,2)距离为
2
的直线共有
 
条.

查看答案和解析>>

同步练习册答案