精英家教网 > 高中数学 > 题目详情
16.已知tanα=$\frac{1}{2}$,tan(α-β)=$\frac{1}{5}$,则tan(2α-β)=$\frac{7}{9}$.

分析 利用两角和的正切公式,求得tan(2α-β)=tan[α+(α-β)]的值.

解答 解:∵tanα=$\frac{1}{2}$,tan(α-β)=$\frac{1}{5}$,则tan(2α-β)=tan[α+(α-β)]=$\frac{tanα+tan(α-β)}{1-tanα•tan(α-β)}$=$\frac{\frac{1}{2}+\frac{1}{5}}{1-\frac{1}{2}•\frac{1}{5}}$=$\frac{7}{9}$,
故答案为:$\frac{7}{9}$.

点评 本题主要考查两角和的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知f(x)=(x-2)ex+ax2+x,a∈R.
(1)当$a=-\frac{1}{2}$时,求f(x)的单调区间;
(2)当x≤0时,f(x)≤-2总成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设二阶矩阵M是把坐标平面上点的横坐标不变、纵坐标沿y方向伸长为原来5倍的伸压变换.
(1)求直线4x-10y=1在M作用下的方程;
(2)求M的特征值与特征向量.
(3)求M5$[\begin{array}{l}2\\ 3\end{array}]$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知命题p:对于任意非零实数x,不等式m<$\frac{{x}^{4}-x^2+1}{{x}^{2}}$恒成立;命题q:函数f(x)=x2-2mx在区间(2,+∞)上是增函数,若命题p和命题q有且只有一个真命题,则实数m的取值范围是(  )
A.(1,2)B.[1,2]C.(-∞,1]D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设$\overrightarrow{a}$表示向东走10km,$\overrightarrow{b}$表示向北走10$\sqrt{3}$km,则$\overrightarrow{a}-\overrightarrow{b}$表示(  )
A.向南偏西30°走20kmB.向北偏西30°走20km
C.向南偏东30°走20kmD.向北偏东30°走20km

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分,回答如下:甲说:是我考满分;乙说:丙不是满分;丙说:乙说的是真话.事实证明:在这三名同学中,只有一人说的是假话,那么满分的同学是(  )
A.B.C.D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13,
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)求{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和.
(Ⅲ)求{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在一次考试中,出了4道判断题,正确的记“√”,不正确的记“×”.若某考生完全随意记上了4个符号(记“√”或“×”的可能性相等)求:
(1)全部正确的概率;
(2)正确答案不少于2道的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用冒泡排序算法对无序列数据进行从小到大排序,则最先沉到最右边的数是(  )
A.最大数B.最小数
C.既不最大也不最小D.不确定

查看答案和解析>>

同步练习册答案