精英家教网 > 高中数学 > 题目详情
4.若函数y=x2+2mx+m在[0,1]上不单调,则f(m)的最小值为-$\frac{1}{12}$.

分析 根据二次函数的单调性可知对称轴x=-2m在区间内,得出m的范围,结合m的范围,得出答案.

解答 解:y=x2+2mx+m在[0,1]上不单调,
∴对称轴x=-2m在区间内,
∴0≤-2m≤1,
∴-$\frac{1}{2}$≤m≤0,
f(m)=m2+2m2+m
=3m2+m
=3(m+$\frac{1}{6}$)2-$\frac{1}{12}$,
∴f(m)的最小值为f(-$\frac{1}{6}$)=-$\frac{1}{12}$.

点评 考查了二次函数的图象和利用配方法求函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=(x-1)ex-kx2(k∈R),当k∈(${\frac{1}{2}$,1)时,求函数f(x)在[0,k]上的最大值M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一次测试中,为了了解学生的学习情况,从中抽取了n个学生的成绩(满分为100分)进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60),[90,100]的数据).
(1)求样本容量n和频率分布直方图中x,y的值;
(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取2名参加志愿者活动,所抽取的2名同学中得分都在[80,90)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在公差为正数的等差数列{an}中,若a10+a11<0,且a10a11<0,Sn是其前n项和,则使Sn<0的n的最大值为21.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设正态总体落在区间(-∞,-1)和区间(3,+∞)内的概率相等,落在区间(-2,4)内的概率为99.74%,求该正态总体对应的正态曲线的最高点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R上的奇函数f(x)满足f(x)=-f(x+$\frac{3}{2}$),f(-1)=1,则f(1)+f(2)+f(3)+…+f(2009)=(  )
A.1B.2C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.给出下列叙述:
①若关于x的不等式$\frac{ax-1}{x+1}$<0的解集是(-∞,-1)∪(-$\frac{1}{2}$,+∞),则a=-2;
②若x>0,y>0,且$\frac{1}{x}$+$\frac{9}{y}$=1,则x+y的最小值为16;
③已知a,b,c,d为实数,且c>d,若a>b,则a-c>b-d;
④函数y=loga(x+3)-1(a>0,且a≠1)的图象恒过定点A,若点A的坐标满足方程mx+ny+1=0,其中mn>0,则$\frac{1}{m}$+$\frac{2}{n}$的最小值为4.
其中所有正确叙述的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知loga$\frac{4}{3}$>1,则a的取值范围是(  )
A.0<a<1B.a>1C.1<a<$\frac{4}{3}$D.a>$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≥0\\ 2x-y-5≤0\end{array}\right.$,求:
(1)z=2x+3y的取值范围;
(2)z=$\frac{y+1}{x+2}$的取值范围.

查看答案和解析>>

同步练习册答案