精英家教网 > 高中数学 > 题目详情
8.已知y=f(x)是奇函数,且f(4)=5,那么f(4)+f(-4)的值为(  )
A.-5B.0C.10D.-10

分析 根据奇函数的性质求出即可.

解答 解:y=f(x)是奇函数,且f(4)=5,
那么f(4)+f(-4)=f(4)-f(4)=0,
故选:B.

点评 本题考查了奇函数的定义,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知过点M(1,2)的直线l与抛物线x2=4y交于A、B两点,且M恰为A、B的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数$f(x)=\frac{1}{3}{x^3}-\frac{a}{2}{x^2}+bx+c$,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.
(1)求b,c的值;
(2)设函数g(x)=f(x)+2x,g(x)在R上为单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图是一个算法流程图,运行后输出的结果是25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.幂函数的图象过点$(2,\sqrt{2})$,则该幂函数的解析式为(  )
A.y=x-1B.$y={x^{\frac{1}{2}}}$C.y=x2D.y=x3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若${a_n}=\left\{{\begin{array}{l}{(4-\frac{2}{3}a)n-3,n≤6}\\{{a^{n-5}},n>6}\end{array}}\right.$,a∈N*,且数列{an}是递增数列,则a的值是(  )
A.4或5B.3或4C.3或2D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数x2=4y的焦点是F,直线l与抛物线交于A,B两点.
(Ⅰ)若直线l过焦点F且斜率为1,求线段AB的长;
(Ⅱ)若直线l与y轴不垂直,且|FA|+|FB|=3.证明:线段AB的中垂线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{x•sinθ}$+lnx在[1,+∞)上为增函数,且θ∈(0,π),g(x)=tx-$\frac{t-1+2e}{x}$-lnx,t∈R.
(Ⅰ)求θ的值;
(Ⅱ)当t=0时,求函数g(x)的单调区间和极大值;
(Ⅲ)若在[1,e]上至少存在一个x0,使得g(x0)>f(x0)成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是100cm3

查看答案和解析>>

同步练习册答案