| A. | 4或5 | B. | 3或4 | C. | 3或2 | D. | 1或2 |
分析 由${a_n}=\left\{{\begin{array}{l}{(4-\frac{2}{3}a)n-3,n≤6}\\{{a^{n-5}},n>6}\end{array}}\right.$,a∈N*,且数列{an}是递增数列,可得$(4-\frac{2}{3}a)$×6-3<a2,$4-\frac{2}{3}a$>0,a∈N*,解出即可得出.
解答 解:∵${a_n}=\left\{{\begin{array}{l}{(4-\frac{2}{3}a)n-3,n≤6}\\{{a^{n-5}},n>6}\end{array}}\right.$,a∈N*,且数列{an}是递增数列,
∴$(4-\frac{2}{3}a)$×6-3<a2,$4-\frac{2}{3}a$>0,a∈N*,
解得6>a>3,因此a=4或5.
故选:A.
点评 本题考查了数列的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com