精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列与等比数列满足,且.

(1)求数列的通项公式;

(2)设,是否存在正整数,使恒成立?若存在,求出的值;若不存在,请说明理由.

【答案】(1). (2)存在正整数,证明见解析

【解析】

(1)根据题意,列出关于dq的两个等式,解方程组,即可求出。

(2)利用错位相减求出,再讨论求出的最小值,对应的n值即为所求的k值。

(1)解:设等差数列与等比数列的公差与公比分别为

,解得

于是,

(2)解:由

,①

,②

②得:

从而得

,得,显然所以数列是递减数列,

于是,对于数列,当为奇数时,即,…为递减数列,

最大项为,最小项大于

为偶数时,即,…为递增数列,最小项为,最大项大于零且小于

那么数列的最小项为

故存在正整数,使恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区有小学150所,中学75所,大学25所.先采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取 18 所学校,中学中抽取所学校.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某公司为郑州园博园生产某特许商品,该公司年固定成本为10万元,每生产千件需另投入2 .7万元,设该公司年内共生产该特许商品工x千件并全部销售完;每千件的销售收入为R(x)万元,

(I)写出年利润W(万元〉关于该特许商品x(千件)的函数解析式;

〔II〕年产量为多少千件时,该公司在该特许商品的生产中所获年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“我将来要当一名麦田里的守望者,有那么一群孩子在一块麦田里玩,几千万的小孩子,附近没有一个大人,我是说……除了我”《麦田里的守望者》中的主人公霍尔顿将自己的精神生活寄托于那广阔无垠的麦田.假设霍尔顿在一块成凸四边形的麦田里成为守望者,如图所示,为了分割麦田,他将连接,设中边所对的角为中边所对的角为,经测量已知.

1)霍尔顿发现无论多长,为一个定值,请你验证霍尔顿的结论,并求出这个定值;

2)霍尔顿发现麦田的生长于土地面积的平方呈正相关,记的面积分别为,为了更好地规划麦田,请你帮助霍尔顿求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 的左焦点为F,直线x=m与椭圆相交于点A、B,当△FAB的周长最大时,△FAB的面积是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x) 为奇函数.

(1)b的值;

(2)证明:函数f(x)在区间(1,+∞)上是减函数;

(3)解关于x的不等式f(1x2)f(x22x4)0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】张卡片分别写有数字,从中任取张,可排出不同的四位数个数为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市地产数据研究所的数据显示,2016年该市新建住宅销售均价走势如图所示,3月至7月房价上涨过快,政府从8月采取宏观调控措施,10月份开始房价得到很好的抑制.

(1)地产数据研究所发现,3月至7月的各月均价(万元/平方米)与月份之间具有较强的线性相关关系,试求关于的回归直线方程;

(2)若政府不调控,按照3月份至7月份房价的变化趋势预测12月份该市新建住宅的销售均价.

参考数据:

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校选派甲、乙、丙、丁、戊5名学生代表学校参加市级“演讲”和“诗词”比赛下面是他们的一段对话甲说:“乙参加‘演讲’比赛”;乙说:“丙参加‘诗词’比赛”;丙说“丁参加‘演讲’比赛”丁说:“戊参加‘诗词’比赛”戊说:“丁参加‘诗词’比赛”

已知这5个人中有2人参加演讲比赛3人参加诗词比赛,其中有2人说的不正确且参加“演讲”的2人中只有1人说的不正确.根据以上信息,可以确定参加“演讲”比赛的学生是

A. 甲和乙 B. 乙和丙 C. 丁和戊 D. 甲和丁

查看答案和解析>>

同步练习册答案