【题目】设抛物线
:
(
)的焦点为
,准线为
,
,且
在第一象限,已知以
为圆心,
为半径的圆
交
于
,
两点(
在
的上方),
为坐标原点.
(1)若
是边长为
的等边三角形,且直线
:
(
)与抛物线
相交于
,
两点,证明:
为定值;
(2)记直线
与抛物线
的另一个交点为
,若
与
的面积比为3,证明:直线
过点
.
科目:高中数学 来源: 题型:
【题目】已知圆
的方程为
,直线
的方程为
,点
在直线
上,过点
作圆
的切线
,切点为
.
(1)若点
的坐标为
,求切线
的方程;
(2)求四边形
面积的最小值;
(3)求证:经过
三点的圆必过定点,并求出所有定点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若将函数y=2sin 2x的图像向左平移
个单位长度,则评议后图象的对称轴为( )
A.x=
–
(k∈Z)
B.x=
+
(k∈Z)
C.x=
–
(k∈Z)
D.x=
+
(k∈Z)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E:
的焦点在
轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.
(1)当t=4,
时,求△AMN的面积;
(2)当
时,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在长方形
中,
为
的中点,
为线段
上一动点.现将
沿
折起,形成四棱锥
.
![]()
图1 图2 图3
(Ⅰ)若
与
重合,且
(如图2).
(ⅰ)证明:
平面
;
(ⅱ)求二面角
的余弦值.
(Ⅱ)若
不与
重合,且平面
平面
(如图3),设
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A、B、C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时);
A班 | 6 6.5 7 7.5 8 |
B班 | 6 7 8 9 10 11 12 |
C班 | 3 4.5 6 7.5 9 10.5 12 13.5 |
(1)试估计C班的学生人数;
(2)从A班和C班抽出的学生中,各随机选取一人,A班选出的人记为甲,C班选出的人记为乙,假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;
(3)再从A、B、C三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记
,表格中数据的平均数记为
,试判断
和
的大小,(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从含有两件正品a,b和一件次品c的3件产品中每次任取一件,连续取两次,求取出的两件产品中,恰有一件是次品的概率。
(1)每次取出不放回;(2)每次取出放回;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1 , 下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.![]()
(1)若AB=6m,PO1=2m,则仓库的容积是多少?
(2)若正四棱柱的侧棱长为6m,则当PO1为多少时,仓库的容积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】观察下列等式:
(sin
)﹣2+(sin
)﹣2=
×1×2;
(sin
)﹣2+(sin
)﹣2+(sin
)﹣2+sin(
)﹣2=
×2×3;
(sin
)﹣2+(sin
)﹣2+(sin
)﹣2+…+sin(
)﹣2=
×3×4;
(sin
)﹣2+(sin
)﹣2+(sin
)﹣2+…+sin(
)﹣2=
×4×5;
…
照此规律,
(sin
)﹣2+(sin
)﹣2+(sin
)﹣2+…+(sin
)﹣2= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com