【题目】如图1,在长方形中,为的中点,为线段上一动点.现将沿折起,形成四棱锥.
图1 图2 图3
(Ⅰ)若与重合,且(如图2).
(ⅰ)证明:平面;
(ⅱ)求二面角的余弦值.
(Ⅱ)若不与重合,且平面平面 (如图3),设,求的取值范围.
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,点在直线上.数列 满足 ,且,前11项和为.
(1)求数列、的通项公式;
(2)设是否存在,使得成立?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量a=(cos ωx,1),b=,函数f(x)=a·b,且f(x)图象的一条对称轴为x=.
(1)求f的值;
(2)若f,f,且α,β∈,求cos(α-β)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF= ,EF交BD于点H.将△DEF沿EF折到△ 的位置, .
(1)证明: 平面ABCD;
(2)求二面角 的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线: ()的焦点为,准线为, ,且在第一象限,已知以为圆心, 为半径的圆交于, 两点(在的上方),为坐标原点.
(1)若是边长为的等边三角形,且直线: ()与抛物线相交于, 两点,证明: 为定值;
(2)记直线与抛物线的另一个交点为,若与的面积比为3,证明:直线过点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,B,锐角α的终边与单位圆O交于点P.
(1)用α的三角函数表示点P的坐标;
(2)当=-时,求α的值;
(3)在x轴上是否存在定点M,使得||=|恒成立?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,左顶点为,过原点且斜率不为0的直线与椭圆交于两点,其中点在第二象限,过点作轴的垂线交于点.
⑴求椭圆的标准方程;
⑵当直线的斜率为时,求的面积;
⑶试比较与大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x> 时,f(x+ )=f(x﹣ ).则f(6)=( )
A.﹣2
B.﹣1
C.0
D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com