精英家教网 > 高中数学 > 题目详情

【题目】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF= ,EF交BD于点H.将△DEF沿EF折到△ 的位置, .

(1)证明: 平面ABCD
(2)求二面角 的正弦值.

【答案】
(1)

证明:∵

∵四边形 为菱形,

又∵


(2)

解:建立如图坐标系

设面 法向量

,取

同理可得面 的法向量


【解析】(1)由底面ABCD为菱形,可得AD=CD,结合AE=CF可得EF∥AC,再由ABCD是菱形,得AC⊥BD,进一步得到EF⊥BD,由EF⊥DH,可得EF⊥D′H,然后求解直角三角形得D′H⊥OH,再由线面垂直的判定得D′H⊥平面ABCD;(2)以H为坐标原点,建立如图所示空间直角坐标系,由已知求得所用点的坐标,得到 的坐标,分别求出平面ABD′与平面AD′C的一个法向量 ,设二面角二面角B﹣D′A﹣C的平面角为θ,求出|cosθ|.则二面角B﹣D′A﹣C的正弦值可求

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)在四棱锥中, ,

平面,直线PC与平面ABCD所成角为

)求四棱锥的体积

)若的中点,求证:平面 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高三模拟考试的学生中随机抽取60名学生,按其数学成绩(均为整数)分成六组 ,…, 后得到如下部分频率分布直方图,观察图中的信息,回答下列问题:

(1)补全频率分布直方图;

(2)估计本次考试的数学平均成绩(同一组中的数据用该组区间的中点值作代表);

(3)用分层抽样的方法在分数段为的学生成绩中抽取一个容量为6的样本,再从这6个样本中任取2人成绩,求至多有1人成绩在分数段内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若将函数y=2sin 2x的图像向左平移 个单位长度,则评议后图象的对称轴为( )
A.x= (k∈Z)
B.x= + (k∈Z)
C.x= (k∈Z)
D.x= + (k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】α、β是两个平面,mn是两条直线,有下列四个命题:
①如果mnmαnβ , 那么αβ.
②如果mαnα , 那么mn.
③如果αβm α , 那么mβ.
④如果mnαβ , 那么mα所成的角和nβ所成的角相等.
其中正确的命题有.(填写所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: 的焦点在 轴上,AE的左顶点,斜率为k(k>0)的直线交EA,M两点,点NE上,MANA.
(1)当t=4, 时,求△AMN的面积;
(2)当 时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在长方形中,的中点,为线段上一动点.现将沿折起,形成四棱锥.

图1 图2 图3

重合,且(如图2).

()证明:平面

()求二面角的余弦值.

不与重合,且平面平面 (如图3),设,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从含有两件正品a,b和一件次品c3件产品中每次任取一件,连续取两次,求取出的两件产品中,恰有一件是次品的概率。

(1)每次取出不放回;(2)每次取出放回;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图所示,在多面体 中,四边形 均为正方形,点 的中点,过的平面交 于 点

(1) 证明:

(2) 求二面角 的余弦值.

查看答案和解析>>

同步练习册答案