精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,A,B,锐角α的终边与单位圆O交于点P.

(1)α的三角函数表示点P的坐标;

(2)=-,α的值;

(3)x轴上是否存在定点M,使得||=|恒成立?若存在,求出点M的坐标;若不存在,请说明理由.

【答案】(1)(cos α,sin α);(2)α=60°;(3)M(-2,0).

【解析】

的三角函数的坐标法定义得到答案

首先写出两个向量的坐标,根据,整理计算即可求出的值

假设存在定点,进行向量的模长运算,求得恒成立时的

(1)α的三角函数表示点P的坐标为(cos α,sin α).

(2),

=-,

+sin2α=-,

整理得到cos α=,所以锐角α=60°.

(3)在x轴上假设存在定点M,M(x,0),=(cos α-x,sin α),

则由||=|恒成立,得到+cos α=(1-2xcos α+x2),整理得2(2+x)cos α=x2-4,

x=-2时等式恒成立,所以存在M(-2,0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某省组织了一次高考模拟考试,该省教育部门抽取了1000名考生的数学考试成绩,并绘制成频率分布直方图如图所示.
(Ⅰ)求样本中数学成绩在95分以上(含95分)的学生人数;
(Ⅱ)已知本次模拟考试全省考生的数学成绩X~N(μ,σ2),其中μ近似为样本的平均数,σ2近似为样本方差,试估计该省的所有考生中数学成绩介于100~138.2分的概率;
(Ⅲ)以频率估计概率,若从该省所有考生中随机抽取4人,记这4人中成绩在[105,125)内的人数为X,求X的分布列及数学期望.
参考数据: ≈18.9, ≈19.1, ≈19.4.
若Z∽N(μ,σ2),则P(μ﹣σ<Z<μ+σ)=0.9826,P(μ﹣2σ<Z<μ+2σ)=0.9544,P(μ﹣3σ<Z<μ+3σ)=0.9976.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】α、β是两个平面,mn是两条直线,有下列四个命题:
①如果mnmαnβ , 那么αβ.
②如果mαnα , 那么mn.
③如果αβm α , 那么mβ.
④如果mnαβ , 那么mα所成的角和nβ所成的角相等.
其中正确的命题有.(填写所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在长方形中,的中点,为线段上一动点.现将沿折起,形成四棱锥.

图1 图2 图3

重合,且(如图2).

()证明:平面

()求二面角的余弦值.

不与重合,且平面平面 (如图3),设,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数 图像上的点P( ,t )向左平移s(s﹥0) 个单位长度得到点P′.若 P′位于函数y=sin2x的图像上,则( )
A.t= ,s的最小值为
B.t= ,s的最小值为
C.t= ,s的最小值为
D.t= ,s的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从含有两件正品a,b和一件次品c3件产品中每次任取一件,连续取两次,求取出的两件产品中,恰有一件是次品的概率。

(1)每次取出不放回;(2)每次取出放回;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小值为

⑴设,求证: 上单调递增;

⑵求证:

⑶求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+bx(a>0,b>0,a≠1,b≠1).
(1)设a=2,b= .
①求方程f(x)=2的根;
②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;
(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P-ABC中,底面ABCD为平行四边形,,OAC的中点,平面MPD的中点。

(1)证明平面

(2)证明平面

(3)求三棱锥P-MAC体积

查看答案和解析>>

同步练习册答案