精英家教网 > 高中数学 > 题目详情
9.已知变量x,y满足约束条件$\left\{\begin{array}{l}x+y≤6\\ x-3y≤-2\\ x≥1\end{array}\right.$,则目标函数z=ax+by(a>0,b>0)的最小值为2,则$\frac{1}{a^2}$+$\frac{1}{b^2}$的最小值为(  )
A.$\frac{1}{2}$B.2C.8D.17

分析 作出不等式对应的平面区域,利用线性规划的知识先求出a,b的关系,然后利用基本不等式求则的最小值.

解答 解:由约束条件得到可行域如图:目标函数z=ax+by(a>0,b>0)
即y=-$\frac{a}{b}$x+$\frac{z}{b}$的最小值为2是过图中A(1,1)得到,所以a+b=2,所以a+b=2≥2$\sqrt{ab}$,
所以ab≤1,则$\frac{1}{a^2}$+$\frac{1}{b^2}$≥$\frac{2}{ab}$≥2;
当且仅当a=b时等号成立;
故选B.

点评 本题主要考查线性规划的应用以及基本不等式的应用,利用数形结合是解决线性规划题目的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=3x$-\frac{1}{{3}^{x}}$,函数g(x)=$\left\{\begin{array}{l}{f(x)+2(x≥0)}\\{f(-x)+2(x<0)}\end{array}\right.$,则函数g(x)的最小值为(  )
A.0B.$\frac{3}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知cos($\frac{π}{6}$-α)=$\frac{{\sqrt{3}}}{3}$,则sin($\frac{5π}{6}$-2α)=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为了了解中学生的身高情况,对某中学同龄的若干女生身高进行测量,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右五个小组的频率分别为0.017,0.050,0.100,0.133,0.300,第三小组的频数为6.
(Ⅰ)参加这次测试的学生数是多少?
(Ⅱ)如果本次测试身高在157cm以上(包括157cm)的为良好,试估计该校女生身高良好率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数f(x)=k•a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数g(x)=$\frac{f(x)+b}{f(x)-1}$是奇函数,求b的值;
(Ⅲ)在(Ⅱ)的条件下判断函数g(x)在(0,+∞)上的单调性,并用定义证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.${({x^2}-1)^2}{({x^3}+\frac{1}{x})^4}$的展开式中x8的系数为(  )
A.24B.20C.12D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知sinα=$\frac{3}{4}$,α∈[$\frac{π}{2}$,π],求cosα、tanα的值.
(2)已知tanθ=-2,求$\frac{{cos(θ-5π)+3cos(\frac{π}{2}-θ)}}{{2sin(θ-\frac{3π}{2})+sin(-θ-4π)}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=kax-a-x(a>0且a≠1)是奇函数,f(1)=$\frac{3}{2}$.
(Ⅰ)求函数f(x)在[1,+∞)上的值域;
(Ⅱ)若函数g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某商店预备在一个月内分批购买每张价值为200元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费40元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共520元,现在全月只有480元资金可以用于支付运费和保管费.
(1)求该月需用去的运费和保管费的总费用f(x);
(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.

查看答案和解析>>

同步练习册答案