精英家教网 > 高中数学 > 题目详情

设函数f(x)=|x2-4x-5|,x∈R.
(1)试求出函数f(x)=|x2-4x-5|的零点
(2)在区间[-2,6]上画出函数f(x)的图象;
(3)写出该函数在R上的单调区间.

解:(1)令f(x)=|x2-4x-5|=0
即x2-4x-5=0
解得x=-1,或x=5
故函数f(x)=|x2-4x-5|的零点为-1,5
(2)函数f(x)=|x2-4x-5|=|(x-2)2-9|,
列表如下:

故函数f(x)=|x2-4x-5|在区间[-2,6]上的图象为:

(3)由(2)中图象可得:
函数在(-∞,-1]上单调递减;
函数在[-1,2]上单调递增;
函数在[2,5]上单调递减;
函数在[5,+∞)上单调递增.
分析:(1)根据函数零点的定义,我们可以将求函数f(x)=|x2-4x-5|的零点,转化为求方程|x2-4x-5|=0的根,根据绝对值的定义脱掉绝对值符号,易得答案.
(2)利用描点法我们易画出函数在区间[-2,6]上的图象.
(3)根据(2)的图象,我们将易分析出函数的性质,进而求出该函数在R上的单调区间.
点评:本题考查的知识点是函数零点的判定定理,二次函数的性质,其中画出函数的图象,交借助图象分析函数的性质,是数形结合思想在解答函数问题时的体现,一定要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是(  )
A、[-5,5]
B、[-
5
5
]
C、[-
10
10
]
D、[-
5
2
5
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案