精英家教网 > 高中数学 > 题目详情

(本小题满分15分)已知二次函数都满足,设函数
).
(1)求的表达式;
(2)若,使成立,求实数的取值范围;
(3)设,求证:对于,恒有.

解:(1)设,于是
,所以 
,则.所以.    
(2)
当m>0时,由对数函数性质,f(x)的值域为R;
当m=0时,恒成立;   
当m<0时,由
列表:

x





0


递减
极小值
递增
 
这时 ,
           
综上,使成立,实数m的取值范围
(3)由题知因为对所以内单调递减.
于是

,则
所以函数是单调增函数,   
所以,故命题成立.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

本题满分12分,每小题各4分)
已知函数
(1)若函数的值域为,求实数a的值;
(2)若函数的递增区间为,求实数a的值;       
(3)若函数在区间上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(Rt∆FHE,H是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=10米,记∠BHE=θ.
(1)试将污水净化管道的长度L表示为θ的函数,并写出定义域;
(2)若sinθ+cosθ=,求此时管道的长度L;
(3)问:当θ取何值时,污水净化效果最好?
并求出此时管道的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数,其中,设
(1)判断的奇偶性,并说明理由
(2)若,求使成立的x的集合

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数
(1)当0≤x≤200时,求函数vx)的表达式
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)fx)=x·vx)可以达到最大,并求出最大值.(精确到1辆/小时)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)已知函数
(1)若f(x)关于原点对称,求a的值;
(2)在(1)下,解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数(a,b为常数)且方程f(x)-x+12=0
有两个实根为x1="3," x2=4.(1)求函数f(x)的解析式;
(2)设k>1,解关于x的不等式;.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题13分)某饮料生产企业为了占有更多的市场份额,拟在2010年度进行
一系列促销活动,经过市场调查和测算,饮料的年销售量x万件与年促销费t万元间满足
。已知2010年生产饮料的设备折旧,维修等固定费用为3 万元,每生产1万件
饮料需再投入32万元的生产费用,若将每件饮料的售价定为:其生产成本的150%与平均
每件促销费的一半之和,则该年生产的饮料正好能销售完。
(1)将2010年的利润y(万元)表示为促销费t(万元)的函数;
(2)该企业2010年的促销费投入多少万元时,企业的年利润最大?
(注:利润=销售收入—生产成本—促销费,生产成本=固定费用+生产费用)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

,则(   )

A.0 B.1 C.2 D.3

查看答案和解析>>

同步练习册答案