精英家教网 > 高中数学 > 题目详情

如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(Rt∆FHE,H是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=10米,记∠BHE=θ.
(1)试将污水净化管道的长度L表示为θ的函数,并写出定义域;
(2)若sinθ+cosθ=,求此时管道的长度L;
(3)问:当θ取何值时,污水净化效果最好?
并求出此时管道的长度.

解:(1)EH=,FH=     EF=  分
由于BE=10tanθ≤10, AF=≤10 故≤tanθ≤,θ∈[,]分
L=++,θ∈[,]
(2) sinθ+cosθ=时,sinθ•cosθ=,    L=20(+1);
(3)L=++    设sinθ+cosθ="t" 则sinθ•cosθ=
由于θ∈[,],所以t=sinθ+cosθ=sin(θ+)∈[,]
L=在[,]内单调递减,
于是当t=时,即θ=,θ=时L的最大值20(+1)米

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)某皮制厂去年生产皮质小包的年产量为10万件,每件皮质小包的销售价格平均为100元,生产成本为80元.从今年起工厂投入100万元科技成本,并计划以后每年比上一年多投入100万元科技成本,预计产量每年递增1万件.设第年每件小包的生产成本元,若皮制产品的销售价格不变,第年的年利润为万元(今年为第一年).
(Ⅰ)求的表达式
(Ⅱ)问从今年算起第几年的利润最高?最高利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本题满分12分)
一批救灾物资随26辆汽车从某市以x km/h的速度匀速开往相距400 km的灾区.为安全起见,每两辆汽车的前后间距不得小于km,车速不能超过100km/h,设从第一辆汽车出发开始到最后一辆汽车到达为止这段时间为运输时间,问运输时间最少需要多少小时?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:函数对一切实数都有成立,且.
(1)求的值。                   
(2)求的解析式。               
(3)已知,设P:当时,不等式 恒成立;Q:当时,是单调函数。如果满足P成立的的集合记为,满足Q成立的的集合记为,求为全集)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数     
(1)若,求的值;
(2)若对任意恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)设,函数
(Ⅰ)设不等式的解集为C,当时,求实数取值范围;
(Ⅱ)若对任意,都有成立,试求时,的值域;
(Ⅲ)设 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)已知二次函数都满足,设函数
).
(1)求的表达式;
(2)若,使成立,求实数的取值范围;
(3)设,求证:对于,恒有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)求函数y=(4x-x2)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)画出函数的图象并指出单调区间;
(2)利用图象讨论:
关于方程(为常数)解的个数?

查看答案和解析>>

同步练习册答案