| A. | 圆 | B. | 椭圆 | C. | 双曲线 | D. | 抛物线 |
分析 将点P到平面ABC距离与到点A的距离相等转化成在面ABC中点P到A的距离与到定直线BC的距离比是一个常数,依据圆锥曲线的第二定义判断出其轨迹的形状.
解答 解:设二面角A-BC-D的平面角为θ,点P到平面BCD的距离为|PH|,
点P到定直线CB的距离为d,则|PH|=dsinθ
∵点P到平面BCD的距离与点P到点A的距离相等
∴dsinθ=|PA|
∴$\frac{|PA|}{d}$<1
即在平面ABC中,点P到定点A的距离与定直线BC的距离之比是一个小于1的常数sinθ,
由椭圆定义知P点轨迹为椭圆在面ABC内的一部分.
故选B.
点评 本题主要考查立体几何中的轨迹问题,解题的关键是将点P到平面ABC距离与到点A的距离相等转化成在面ABC中点P到A的距离与到定直线BC的距离比是一个常数.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com