精英家教网 > 高中数学 > 题目详情
15.在平面直角坐标系xOy中,设圆C的方程为(x-a)2+(y-2a+4)2=1.
(Ⅰ)若圆C经过A(3,3)与B(4,2)两点,求实数a的值;
(Ⅱ)点P(0,3),若圆C上存在点M,使|MP|=2|MO|,求实数a的取值范围.

分析 (Ⅰ)设圆C的圆心(x,y),则$\left\{\begin{array}{l}x=a\\ y=2a-4\end{array}\right.$即圆C的圆心满足y=2x-4.由$\left\{\begin{array}{l}y=2x-4\\ y=x-1\end{array}\right.$,得圆心C(3,2),即可得出结论.
(Ⅱ)设点M(x,y),通过|MA|=2|MO|,化简,利用点M(x,y)在圆C上,推出|2-1|≤|CD|≤2+1,求解即可.

解答 解:(Ⅰ)由题意kAB=-1,线段AB的中点为$(\frac{7}{2},\frac{5}{2})$,
故线段AB的中垂线方程为$y-\frac{5}{2}=x-\frac{7}{2}$即y=x-1.
设圆C的圆心(x,y),则$\left\{\begin{array}{l}x=a\\ y=2a-4\end{array}\right.$即圆C的圆心满足y=2x-4.
由$\left\{\begin{array}{l}y=2x-4\\ y=x-1\end{array}\right.$,得圆心C(3,2),即a=3.
(Ⅱ)点M(x,y),因为|MA|=2|MO|,
所以$\sqrt{{x}^{2}+(y-3)^{2}}$=2$\sqrt{{x}^{2}+{y}^{2}}$,化简得x2+y2+2y-3=0,即x2+(y+1)2=4,
所以点M在以D(0,-1)为圆心,2为半径的圆上
所以点M应该既在圆C上又在圆D上,即圆C和圆D有公共点.
因此$|{2-1}|≤\sqrt{{a^2}+{{[{(2a-4)-(-1)}]}^2}}≤|{2+1}|$
由5a2-8a+8≥0得a∈R;由5a2-12a≤0得$0≤a≤\frac{12}{5}$,
因此所求实数a的取值范围是$0≤a≤\frac{12}{5}$.

点评 本题考查圆的方程的应用,直线与圆的位置关系,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).
(1)如果椭圆M的离心率e=$\frac{\sqrt{3}}{2}$,经过点P(2,1).
①求椭圆M的方程;
②经过点P的两直线与椭圆M分别相交于A,B,它们的斜率分别为k1,k2.如果k1+k2=0,试问:直线AB的斜率是否为定值?并证明.
(2)如果椭圆M的a=2,b=1,点B,C分别为椭圆M的上、下顶点,过点T(t,2)(t≠0)的直线TB,TC分别与椭圆M交于E,F两点.若△TBC的面积是△TEF的面积的k倍,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在三棱锥P-ABC中,PA⊥底面ABC,BC⊥AC,∠ABC=30°,AC=1,PB=2$\sqrt{3}$,则PC与平面PAB所成余弦值是(  )
A.$\frac{\sqrt{33}}{6}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{6}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=ax,g(x)=logax(a>0,a≠1),若$f({\frac{1}{2}})•g({\frac{1}{2}})<0$,那么f(x)与g(x)在同一坐标系内的图象可能是下图中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥平面ABCD,且AB=PD=2,则这个四棱锥的内切球半径是2-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设G为△ABC的重心,a,b,c分别为角A,B,C的对边,若35a$\overrightarrow{GA}$+21b$\overrightarrow{GB}$+15c$\overrightarrow{GC}$=$\overrightarrow{0}$,则sinC=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在正四面体ABCD中,平面ABC内动点P满足其到平面BCD距离与到A点距离相等,则动点P的轨迹是(  )
A.B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.正三棱柱ABC-A′B′C′的A′A=AB=2,则点A到BC′的距离为$\frac{{\sqrt{14}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=lnx+ln(2-x)+ax(a>0).
(1)当a=1时,求f(x)的单调区间.
(2)若f(x)在(0,1]上的最大值为2,求a的值.

查看答案和解析>>

同步练习册答案