精英家教网 > 高中数学 > 题目详情
12.如图,已知矩形ABCD中,AB=2,AD=1,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM,连结BM.

(Ⅰ)求证:BM⊥平面ADM;
(Ⅱ)求二面角A-DM-C的余弦值; 
(Ⅲ)若点E是线段DB上的一动点,问点E在何位置时,三棱锥M-ADE的体积为$\frac{{\sqrt{2}}}{12}$.

分析 (Ⅰ)推导出AM⊥BM,由此能证明BM⊥平面ADM,
(2)分别取AM,AB的中点O和N,建立空间直角坐标系,利用向量法能求出二面角A-DM-C的余弦值.
(3)求出平面ADM的一个法向量,从而点E到平面ADM的距离d=$\frac{|\overrightarrow{AE}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\sqrt{2}λ$,由此利用体积公式能求出E为BD的中点时,三棱锥M-ADE的体积为$\frac{{\sqrt{2}}}{12}$.

解答 证明:(Ⅰ)∵矩形ABCD中,AB=2,AD=1,M为DC的中点,
∴AM=BM=$\sqrt{2}$,
∴AM2+BM2=AB2,∴AM⊥BM.
∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,
∴BM⊥平面ADM,
解:(2)分别取AM,AB的中点O和N,则ON∥BM,
在(1)中证明BM⊥平面ADM,
∴ON⊥⊥平面ADM,ON⊥AM,ON⊥OD,
∵AD=DM,∴DO⊥AM,
建立空间直角坐标系,如图,
D(0,0,$\frac{\sqrt{2}}{2}$),M(-$\frac{\sqrt{2}}{2}$,0,0),C(-$\sqrt{2}$,$\frac{\sqrt{2}}{2}$,0),
则$\overrightarrow{DM}$=(-$\frac{\sqrt{2}}{2}$,0,-$\frac{\sqrt{2}}{2}$),$\overrightarrow{MC}$=(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$,0),
设$\overrightarrow{m}$=(x,y,z)是平面CDM的法向量,
则$\left\{\begin{array}{l}{\overrightarrow{DM}•\overrightarrow{m}=-\frac{\sqrt{2}}{2}x-\frac{\sqrt{2}}{2}z=0}\\{\overrightarrow{MC}•\overrightarrow{m}=-\frac{\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}y=0}\end{array}\right.$,
令x=1,则y=1,z=-1,即$\overrightarrow{m}$=(1,1,-1),
由题意知$\overrightarrow{n}$=(0,1,0)是平面ADM的法向量,
设二面角A-DM-C的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$.
∴二面角A-DM-C的余弦值为$\frac{\sqrt{3}}{3}$.
(3)D(0,0,$\frac{\sqrt{2}}{2}$),A($\frac{\sqrt{2}}{2}$,0,0),B(-$\frac{\sqrt{2}}{2}$,$\sqrt{2}$,0),
∴$\overrightarrow{DB}$=(-$\frac{\sqrt{2}}{2}$,$\sqrt{2}$,-$\frac{\sqrt{2}}{2}$),
∵E是线段DB上的一个动点,
∴$\overrightarrow{DE}$=$λ\overrightarrow{DB}$=(-$\frac{\sqrt{2}}{2}λ$,$\sqrt{2}λ$,-$\frac{\sqrt{2}}{2}$λ),则E(-$\frac{\sqrt{2}}{2}$λ,$\sqrt{2}λ$,$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{2}}{2}$λ),
∴$\overrightarrow{AE}$=(-$\frac{\sqrt{2}}{2}$λ-$\frac{\sqrt{2}}{2}$,$\sqrt{2}λ$,$\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}$λ),
$\overrightarrow{n}$=(0,1,0)是平面ADM的一个法向量.
点E到平面ADM的距离d=$\frac{|\overrightarrow{AE}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\sqrt{2}λ$,
则VM-ADE=$\frac{1}{3}{S}_{△ADM}•d$=$\frac{1}{3}×\frac{1}{2}×1×1×\sqrt{2}$λ=$\frac{\sqrt{2}}{12}$,
解得λ=$\frac{1}{2}$,则E为BD的中点.

点评 本题考查线面垂直的证明,考查二面角的余弦值的求法中,考查满足条件的点的位置的确定,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.函数f(x)=$\frac{a+lnx}{x}$,若曲线f(x)在点(e,f(e))处的切线与直线e2x-y+e=0垂直(其中e为自然对数的底数).
(1)求f(x)的单调区间和极值.
(2)求证:当x>1时,$\frac{f(x)}{e+1}$>$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=ax,g(x)=logax(a>0,a≠1),若$f({\frac{1}{2}})•g({\frac{1}{2}})<0$,那么f(x)与g(x)在同一坐标系内的图象可能是下图中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设G为△ABC的重心,a,b,c分别为角A,B,C的对边,若35a$\overrightarrow{GA}$+21b$\overrightarrow{GB}$+15c$\overrightarrow{GC}$=$\overrightarrow{0}$,则sinC=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在正四面体ABCD中,平面ABC内动点P满足其到平面BCD距离与到A点距离相等,则动点P的轨迹是(  )
A.B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1,F2分别是它的左、右焦点,已知椭圆C过点(0,1),且离心率e=$\frac{2\sqrt{2}}{3}$.
(1)求椭圆C的方程;
(2)如图,设椭圆的左、右顶点分别为A、B,直线l的方程为x=4,P是椭圆上异于A、B的任意一点,直线PA、PB分别交直线l于D、E两点,求证$\overrightarrow{{F}_{1}D}$•$\overrightarrow{{F}_{2}E}$为一定值,并求出这一定值;
(3)是否存在过点Q(1,0)的直线m(与x轴不垂直)与椭圆C交于M、N两点,使 $\overrightarrow{M{F}_{1}}$⊥$\overrightarrow{N{F}_{1}}$,若存在,求出l的斜率,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.正三棱柱ABC-A′B′C′的A′A=AB=2,则点A到BC′的距离为$\frac{{\sqrt{14}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.f(x)=kx-lnx在区间(1,+∞)上是减函数,k的取值范围是(  )
A.(-∞,0)B.(-∞,0]C.(-∞,1)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若抛物线C:x=2py2(p>0)过点(2,5),则准线的方程为x=-$\frac{25}{8}$.

查看答案和解析>>

同步练习册答案