精英家教网 > 高中数学 > 题目详情
17.椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1,F2分别是它的左、右焦点,已知椭圆C过点(0,1),且离心率e=$\frac{2\sqrt{2}}{3}$.
(1)求椭圆C的方程;
(2)如图,设椭圆的左、右顶点分别为A、B,直线l的方程为x=4,P是椭圆上异于A、B的任意一点,直线PA、PB分别交直线l于D、E两点,求证$\overrightarrow{{F}_{1}D}$•$\overrightarrow{{F}_{2}E}$为一定值,并求出这一定值;
(3)是否存在过点Q(1,0)的直线m(与x轴不垂直)与椭圆C交于M、N两点,使 $\overrightarrow{M{F}_{1}}$⊥$\overrightarrow{N{F}_{1}}$,若存在,求出l的斜率,若不存在,请说明理由.

分析 (1)由已知求出b,结合椭圆离心率及隐含条件列式求得a,则椭圆C的方程可求;
(2)设P(x0,y0),推出直线PA、PB的方程,求得D,E两点的坐标求出向量,利用点P(x0,y0)在椭圆C上,即可求$\overrightarrow{{F}_{1}D}•\overrightarrow{{F}_{2}E}$的值;
(3)设M(x1,y1),N(x2,y2),m:x=ty+1,联立直线方程和椭圆方程,化为关于y的一元二次方程,利用根与系数的关系求出M,N的纵坐标的和与积,代入 $\overrightarrow{M{F}_{1}}$•$\overrightarrow{N{F}_{1}}$,求出 $\overrightarrow{M{F}_{1}}$•$\overrightarrow{N{F}_{1}}$≠0,说明不存在过点Q(1,0)的直线m(与x轴不垂直)与椭圆C交于M、N两点,使 $\overrightarrow{M{F}_{1}}$⊥$\overrightarrow{N{F}_{1}}$.

解答 解:(1)由题意可知,b=1,联立$\left\{\begin{array}{l}{b=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\\{e=\frac{c}{a}=\frac{2\sqrt{2}}{3}}\end{array}\right.$,解得a2=9,c2=8,b2=1.
∴椭圆C的方程为$\frac{{x}^{2}}{9}+{y}^{2}=1$;
(2)设P(x0,y0),则直线PA、PB的方程分别为y=$\frac{{y}_{0}}{{x}_{0}+3}$(x+3),y=$\frac{{y}_{0}}{{x}_{0}-3}$(x-3),
将x=4分别代入可求得D,E两点的坐标分别为D(4,$\frac{7{y}_{0}}{{x}_{0}+3}$),E(4,$\frac{{y}_{0}}{{x}_{0}-3}$).
由(1),F1(-2$\sqrt{2}$,0),F2(2$\sqrt{2}$,0),
∴$\overrightarrow{{F}_{1}D}$•$\overrightarrow{{F}_{2}E}$=(4+2$\sqrt{2}$,$\frac{7{y}_{0}}{{x}_{0}+3}$)•(4-2$\sqrt{2}$,$\frac{{y}_{0}}{{x}_{0}-3}$)=8+$\frac{7{{y}_{0}}^{2}}{{{x}_{0}}^{2}-9}$,
又∵点P(x0,y0)在椭圆C上,
∴$\frac{{{x}_{0}}^{2}}{9}+{{y}_{0}}^{2}=1$,得$\frac{{{y}_{0}}^{2}}{{{x}_{0}}^{2}-9}=-\frac{1}{9}$,
∴$\overrightarrow{{F}_{1}D}$•$\overrightarrow{{F}_{2}E}$=$\frac{65}{9}$;
(3)设过点Q(1,0)的直线m(与x轴不垂直)与椭圆C交于M、N两点,设m:x=ty+1,
再设M(x1,y1),N(x2,y2),F1($-2\sqrt{2}$,0),
联立$\left\{\begin{array}{l}{x=ty+1}\\{{x}^{2}+9{y}^{2}=9}\end{array}\right.$,得(t2+9)y2+2ty-8=0.
△=4t2+32(t2+9)>0,
${y}_{1}+{y}_{2}=\frac{-2t}{{t}^{2}+9},{y}_{1}{y}_{2}=\frac{-8}{{t}^{2}+9}$,
x1+x2=t(y1+y2)+2,
∴${x}_{1}{x}_{2}=(t{y}_{1}+1)(t{y}_{2}+1)={t}^{2}{y}_{1}{y}_{2}+t({y}_{1}+{y}_{2})+1$=$\frac{-8{t}^{2}}{{t}^{2}+9}-\frac{2{t}^{2}}{{t}^{2}+9}+1=\frac{-9{t}^{2}+9}{{t}^{2}+9}$,
$\overrightarrow{M{F}_{1}}•\overrightarrow{N{F}_{1}}=(-2\sqrt{2}-{x}_{1},-{y}_{1})•(-2\sqrt{2}-{x}_{2},-{y}_{2})$
=$(2\sqrt{2}+{x}_{1})(2\sqrt{2}+{x}_{2})+{y}_{1}{y}_{2}$=$8+2\sqrt{2}({x}_{1}+{x}_{2})+{x}_{1}{x}_{2}+{y}_{1}{y}_{2}$
=$8+2\sqrt{2}t({y}_{1}+{y}_{2})+4\sqrt{2}$+x1x2+y1y2=$8+2\sqrt{2}t•\frac{-2t}{{t}^{2}+9}+4\sqrt{2}+\frac{-9{t}^{2}+9}{{t}^{2}+9}+\frac{-8}{{t}^{2}+9}$
=$\frac{8{t}^{2}+72-4\sqrt{2}{t}^{2}+4\sqrt{2}{t}^{2}+36\sqrt{2}-9{t}^{2}+9-8}{{t}^{2}+9}$=$\frac{-{t}^{2}+73+36\sqrt{2}}{{t}^{2}+9}$≠0.
∴不存在过点Q(1,0)的直线m(与x轴不垂直)与椭圆C交于M、N两点,使 $\overrightarrow{M{F}_{1}}$⊥$\overrightarrow{N{F}_{1}}$.

点评 本题考查椭圆的相关知识,直线与椭圆的位置关系的应用,考查学生运算能力、分析问题的能力,属难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数y=f(x)的图象关于原点对称,且当x∈(-∞,0),f(x)+xf′(x)<0成立,若a=(-2)×f(-2),b=f(1),c=3×f(3),则a,b,c的关系大小是(  )
A.b>a>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个多面体的三视图如图所示,则此多面体的表面积是(  )
A.10B.12C.8+4$\sqrt{2}$D.12+4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过点(2,0)引直线l与曲线$y=\sqrt{2-{x^2}}$相交于A,B两点,O为坐标原点,当△AOB的面积取最大值时,直线l的斜率等于(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\sqrt{3}$C.$±\frac{{\sqrt{3}}}{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知矩形ABCD中,AB=2,AD=1,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM,连结BM.

(Ⅰ)求证:BM⊥平面ADM;
(Ⅱ)求二面角A-DM-C的余弦值; 
(Ⅲ)若点E是线段DB上的一动点,问点E在何位置时,三棱锥M-ADE的体积为$\frac{{\sqrt{2}}}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出下列命题,正确的命题是(  )
A.底面是矩形的平行六面体是长方体
B.底面是正方形的直平行六面体是正四棱柱
C.底面是正方形的直四棱柱是正方体
D.所有棱长都相等的直平行六面体是正方体

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知P为椭圆$\frac{x^2}{36}+\frac{y^2}{9}=1$上的任意一点,O为坐标原点,M在线段OP上,且$\overrightarrow{OM}=\frac{1}{3}\overrightarrow{OP}$
(1)求点M的轨迹E的方程;
(2)若A(-4,0),B(0,4),C为轨迹E上的动点,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.(理)已知点P(-4,4),曲线C:$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数),若Q是曲线C上的动点,则线段PQ的中点M到直线l:$\left\{\begin{array}{l}{x=3+2t}\\{y=-2+t}\end{array}\right.$(t为参数)距离的最小值为$\frac{8\sqrt{5}}{5}$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-2lnx.
(1)求证:f(x)在(1,+∞)上单调递增.
(2)若f(x)≥2tx-$\frac{1}{{x}^{2}}$在x∈(0,1]内恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案