精英家教网 > 高中数学 > 题目详情
6.(理)已知点P(-4,4),曲线C:$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数),若Q是曲线C上的动点,则线段PQ的中点M到直线l:$\left\{\begin{array}{l}{x=3+2t}\\{y=-2+t}\end{array}\right.$(t为参数)距离的最小值为$\frac{8\sqrt{5}}{5}$..

分析 设Q(8cosθ,3sinθ)(0≤φ<2π),则M(-2+4cosθ,2+$\frac{3}{2}$sinθ),直线l:$\left\{\begin{array}{l}{x=3+2t}\\{y=-2+t}\end{array}\right.$(t为参数)的普通方程为x-2y-7=0,利用点到直线的距离公式可得:点M到直线l的距离,利用三角函数的单调性与极值即可得出.

解答 解:设Q(8cosθ,3sinθ)(0≤φ<2π),则M(-2+4cosθ,2+$\frac{3}{2}$sinθ),
直线l:$\left\{\begin{array}{l}{x=3+2t}\\{y=-2+t}\end{array}\right.$(t为参数)的普通方程为x-2y-7=0,
则点M到直线l的距离为d=$\frac{|-2+4cosθ-4-3sinθ-7|}{\sqrt{5}}$=$\frac{|5sin(θ-α)+13|}{\sqrt{5}}$
∴点M到直线l的距离最小值为$\frac{8\sqrt{5}}{5}$.
故答案为$\frac{8\sqrt{5}}{5}$.

点评 本题考查了椭圆的参数方程及其应用、中点坐标公式、点到直线的距离公式、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点分别为F1,F2,点A在椭圆上,AF2⊥x轴,若$\frac{{|A{F_1}|}}{{|A{F_2}|}}=\frac{5}{3}$,则椭圆的离心率等于(  )
A.2B.$\frac{1}{5}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1,F2分别是它的左、右焦点,已知椭圆C过点(0,1),且离心率e=$\frac{2\sqrt{2}}{3}$.
(1)求椭圆C的方程;
(2)如图,设椭圆的左、右顶点分别为A、B,直线l的方程为x=4,P是椭圆上异于A、B的任意一点,直线PA、PB分别交直线l于D、E两点,求证$\overrightarrow{{F}_{1}D}$•$\overrightarrow{{F}_{2}E}$为一定值,并求出这一定值;
(3)是否存在过点Q(1,0)的直线m(与x轴不垂直)与椭圆C交于M、N两点,使 $\overrightarrow{M{F}_{1}}$⊥$\overrightarrow{N{F}_{1}}$,若存在,求出l的斜率,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=mx3-3(m+1)x2+nx+1在x=1处有极值m,n∈R
(Ⅰ)求m与n的关系式;
(Ⅱ)当m=-2时,求f(x)的单调区间及极小值点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.f(x)=kx-lnx在区间(1,+∞)上是减函数,k的取值范围是(  )
A.(-∞,0)B.(-∞,0]C.(-∞,1)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数,根据合情推理试猜测第七个三角形有(  )个石子
A.28B.21C.36D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在极坐标系中,点M(2,$\frac{π}{3}$)到直线l:ρsin(θ+$\frac{π}{4}$)=$\frac{{\sqrt{2}}}{2}$的距离为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{3}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列说法中正确的是.(  )
①独立性检验的基本思想是带有概率性质的反证法;
②独立性检验就是选取一个假设Ho条件下的小概率事件,若在一次试验中该事件发生了,这是与实际推断相抵触的“不合理”现象,则作出拒绝Ho的推断;
③独立性检验一定能给出明确的结论.
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知椭圆C:$\frac{x^2}{4}+{y^2}$=1,过点D(0,4)的直线l与椭圆C交于不同两点M,N(M在D,N之间),有以下四个结论:
①若$\overrightarrow{DN}=λ\overrightarrow{DM}$,则λ的取值范围是1<λ≤$\frac{5}{3}$;
②若A是椭圆C的右顶点,且∠MAN的角平分线是x轴,则直线l的斜率为-2;
③若以MN为直径的圆过原点O,则直线l的斜率为±2$\sqrt{5}$;
④若$\left\{{\begin{array}{l}{{x^'}=x}\\{{y^'}=2y}\end{array}}$,椭圆C变成曲线E,点M,N变成M′,N′,曲线E与y轴交于点P,Q,则直线PN′与QM′的交点必在一条定直线上.
其中正确的序号是①④.

查看答案和解析>>

同步练习册答案