精英家教网 > 高中数学 > 题目详情
11.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数,根据合情推理试猜测第七个三角形有(  )个石子
A.28B.21C.36D.32

分析 观察不难发现,第n个三角形所表示的数为从1开始到n的自然数的和,然后相加即可得解.

解答 解:第1个三角形表示的数是1,
第2个三角形表示的数是1+2=3,
第3个三角形表示的数是1+2+3=6,
第4个三角形表示的数是1+2+3+4=10,
…,
第n个三角形表示的数是1+2+3+…+n=$\frac{1}{2}$n(n+1)
∴第七个三角形表示的数是$\frac{1}{2}$×7×8=28.
故选:A.

点评 本题考查数列的递推关系,数列的求和及归纳推理,解题的关键是由题设得出相邻两个三角形数的递推关系,由此列举出三角形数,本题综合性强,有一定的探究性,是高考的重点题型,解答时要注意总结其中的规律.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点${F_1}(-\sqrt{2},0),{F_2}(\sqrt{2},0)$,点$P(1,\frac{{\sqrt{6}}}{3})$在此椭圆上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN的斜率分别为k1,k2,求证:k1+k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出下列命题,正确的命题是(  )
A.底面是矩形的平行六面体是长方体
B.底面是正方形的直平行六面体是正四棱柱
C.底面是正方形的直四棱柱是正方体
D.所有棱长都相等的直平行六面体是正方体

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=|2x-4|+1.
(1)画出函数y=f(x)的图象.
(2)若对任意x∈R,f(x)≥a2-3a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.(理)已知点P(-4,4),曲线C:$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数),若Q是曲线C上的动点,则线段PQ的中点M到直线l:$\left\{\begin{array}{l}{x=3+2t}\\{y=-2+t}\end{array}\right.$(t为参数)距离的最小值为$\frac{8\sqrt{5}}{5}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=$\sqrt{2}sin({x-{{45}°}})-sinx$(  )
A.是奇函数但不是偶函数B.是偶函数但不是奇函数
C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的右焦点为$(\sqrt{2},0)$,且经过点$(\frac{{\sqrt{2}}}{2},-\frac{{\sqrt{7}}}{2})$,过椭圆的左顶点A作直线l⊥x轴,点M为直线l上的动点(点M与点A不重合),点B为椭圆右顶点,直线BM交椭圆C于点P.
(1)求椭圆C的方程;
(2)求证:AP⊥OM;
(3)试问$\overrightarrow{OP}•\overrightarrow{OM}$是否为定值?若是定值,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在三棱锥中A-BCD,A(0,0,2),B(4,4,0),C(4,0,0),D(0,4,3),若下列网格纸上小正方形的边长为1,则三棱锥A-BCD的三视图不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.P点在曲线$\left\{\begin{array}{l}x=4+2cosθ\\ y=2sinθ\end{array}$上,点Q在曲线θ=$\frac{π}{4}$(ρ∈R)上,则|PQ|的最小值为2$\sqrt{2}$-2.

查看答案和解析>>

同步练习册答案