精英家教网 > 高中数学 > 题目详情
19.设函数f(x)=|2x-4|+1.
(1)画出函数y=f(x)的图象.
(2)若对任意x∈R,f(x)≥a2-3a恒成立,求实数a的取值范围.

分析 (1)将函数表示为分段函数形式,然后进行作图即可,
(2)利用不等式恒成立,转化为最值恒成立即可.

解答 解:(1)y=f(x)=$\left\{\begin{array}{l}{2x-3,}&{x≥2}\\{5-2x,}&{x<2}\end{array}\right.$,则对应的函数图象为:

(2)∵f(x)=|2x-4|+1≥1,
∴若对任意x∈R,f(x)≥a2-3a恒成立,
则等价为a2-3a≤1,即a2-3a-1≤0,
得$\frac{3-\sqrt{13}}{2}$<a<$\frac{3+\sqrt{13}}{2}$,
即实数a的取值范围是$\frac{3-\sqrt{13}}{2}$<a<$\frac{3+\sqrt{13}}{2}$.

点评 本题主要考查函数图象的应用,以及不等式恒成立问题,将函数表示为分段函数形式以及利用最值恒成立是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.如图,在△ABC中,∠BAC=90°,AB=AC=2,AD⊥BC于D.将△ADC沿AD翻折至△ADC′,下列说法中正确的是①③④(写出所有正确命题的序号)
①AD⊥BC′;    
②BC′可能与平面△ADC′垂直;
③D-ABC′可能是正三棱锥;
④三棱锥D-ABC′体积的最大值为$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}中,${a_1}=1,{a_2}=\frac{1}{4}$,且$\frac{1}{{n{a_{n+1}}}}=\frac{1}{{(n-1){a_n}}}-\frac{1}{n(n-1)}(n≥2,n∈N)$.  
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:对一切n∈N*,有$a_1^2+a_2^2+…+a_n^2<\frac{7}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,长宽高分别为a、b、c的长方体的六条面对角线组成等腰四面体ABCD.
(1)求证等腰四面体ABCD的每个面都是锐角三角形;
(2)求等腰四面体的体积及其外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=mx3-3(m+1)x2+nx+1在x=1处有极值m,n∈R
(Ⅰ)求m与n的关系式;
(Ⅱ)当m=-2时,求f(x)的单调区间及极小值点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l1的参数方程$\left\{\begin{array}{l}{x=2+\sqrt{2}t}\\{y=1+\sqrt{2}t}\end{array}\right.$(t是参数),直线l2的极坐标方程为ρ(cosθ+sinθ)=2,则l1与l2的夹角是90°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数,根据合情推理试猜测第七个三角形有(  )个石子
A.28B.21C.36D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入3万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=$\left\{\begin{array}{l}{9.4-\frac{1}{30}{x}^{2}(0≤x≤10)}\\{\frac{110}{x}-\frac{432}{{x}^{2}}(x>10)}\end{array}\right.$.
(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大?
(注:年利润=年销售收入-年总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
优秀非优秀总计
甲班10
乙班30
合计105
已知在全部105人中随机抽取一人为优秀的概率为$\frac{2}{7}$.
(1)请完成上面的列联表;
(2)根据列联表的数据,若按97.5%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到8或9号的概率.
参考公式和数据:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案