8£®ÒÑÖªÒ»¼Ò¹«Ë¾Éú²úijÖÖÆ·ÅÆ·þ×°µÄÄê¹Ì¶¨³É±¾Îª10ÍòÔª£¬Ã¿Éú²ú1ǧ¼þÐèÁíͶÈë3ÍòÔª£®Éè¸Ã¹«Ë¾Ò»ÄêÄÚ¹²Éú²ú¸ÃÆ·ÅÆ·þ×°xǧ¼þ²¢È«²¿ÏúÊÛÍ꣬ÿǧ¼þµÄÏúÊÛÊÕÈëΪR£¨x£©ÍòÔª£¬ÇÒR£¨x£©=$\left\{\begin{array}{l}{9.4-\frac{1}{30}{x}^{2}£¨0¡Üx¡Ü10£©}\\{\frac{110}{x}-\frac{432}{{x}^{2}}£¨x£¾10£©}\end{array}\right.$£®
£¨1£©Ð´³öÄêÀûÈóW£¨ÍòÔª£©¹ØÓÚÄê²úÁ¿x£¨Ç§¼þ£©µÄº¯Êý½âÎöʽ£»
£¨2£©Äê²úÁ¿Îª¶àÉÙǧ¼þʱ£¬¸Ã¹«Ë¾ÔÚÕâÒ»Æ·ÅÆ·þ×°µÄÉú²úÖÐËù»ñµÃµÄÄêÀûÈó×î´ó£¿
£¨×¢£ºÄêÀûÈó=ÄêÏúÊÛÊÕÈë-Äê×ܳɱ¾£©

·ÖÎö £¨1£©ÓÉÄêÀûÈóW=Äê²úÁ¿x¡Áÿǧ¼þµÄÏúÊÛÊÕÈëΪR£¨x£©-³É±¾£¬ÓÖÓÉR£¨x£©=$\left\{\begin{array}{l}{9.4-\frac{1}{30}{x}^{2}£¨0¡Üx¡Ü10£©}\\{\frac{110}{x}-\frac{432}{{x}^{2}}£¨x£¾10£©}\end{array}\right.$£¬ÇÒÄê¹Ì¶¨³É±¾Îª10ÍòÔª£¬Ã¿Éú²ú1ǧ¼þÐèÁíͶÈë3ÍòÔª£®ÎÒÃÇÒ×µÃÄêÀûÈóW£¨ÍòÔª£©¹ØÓÚÄê²úÁ¿x£¨Ç§¼þ£©µÄº¯Êý½âÎöʽ£»
£¨2£©ÓÉ£¨1£©µÄ½âÎöʽ£¬ÎÒÃÇÇó³ö¸÷¶ÎÉϵÄ×î´óÖµ£¬¼´ÀûÈóµÄ×î´óÖµ£¬È»ºó¸ù¾Ý·Ö¶Îº¯ÊýµÄ×î´óÖµÊǸ÷¶ÎÉÏ×î´óÖµµÄ×î´óÕߣ¬¼´¿ÉµÃµ½½á¹û£®

½â´ð ½â£º£¨1£©µ±0£¼x¡Ü10ʱ£¬
$W=xR£¨x£©-£¨10+3x£©=x£¨9.4-\frac{1}{30}{x^2}£©-10-3x=6.4x-\frac{x^3}{30}-10$£»
µ±x£¾10ʱ£¬$W=xR£¨x£©-£¨10+3x£©=x£¨\frac{110}{x}-\frac{432}{x^2}£©-10-3x=100-3£¨x+\frac{144}{x}£©$£®
ËùÒÔW=$\left\{\begin{array}{l}{6.4x-\frac{{x}^{3}}{30}-10£¬x¡Ê£¨0£¬10]}\\{100-3£¨x+\frac{144}{x}£©£¬x¡Ê£¨10£¬+¡Þ£©}\end{array}\right.$£»
£¨2£©¢Ùµ±0£¼x£¼10ʱ£¬ÓÉW'=6.4-$\frac{{x}^{2}}{10}$=0£¬µÃx=8£¬
ÇÒµ±x¡Ê£¨0£¬8£©Ê±£¬W'£¾0£»µ±x¡Ê£¨8£¬10£©Ê±£¬W'£¼0£¬
¡àµ±x=8ʱ£¬WÈ¡×î´óÖµ£¬ÇÒWmax=6.4¡Á8-$\frac{{8}^{3}}{30}$-10¡Ö24£®
¢Úµ±x£¾10ʱ£¬W=100-3£¨x+$\frac{144}{x}$£©¡Ü100-3¡Á2$\sqrt{x•\frac{144}{x}}$=100-72=28£®
µ±ÇÒ½öµ±x=$\frac{144}{x}$£¬¼´x=12ʱ£¬W=28£¬
¹Êµ±x=12ʱ£¬WÈ¡×î´óÖµ28£®
×ۺϢ٢ÚÖªµ±x=12ʱ£¬WÈ¡×î´óÖµ28ÍòÔª£¬
¹Êµ±Äê²úÁ¿Îª12ǧ¼þʱ£¬¸Ã¹«Ë¾ÔÚÕâÒ»Æ·ÅÆ·þ×°µÄÉú²úÖÐËù»ñÄêÀûÈó×î´ó£®

µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊǷֶκ¯Êý¼°º¯ÊýµÄ×îÖµ£¬·Ö¶Îº¯Êý·Ö¶Î´¦Àí£¬ÕâÊÇÑо¿·Ö¶Îº¯ÊýͼÏóºÍÐÔÖÊ×îºËÐĵÄÀíÄ¾ßÌå×ö·¨ÊÇ£º·Ö¶Îº¯ÊýµÄ¶¨ÒåÓò¡¢ÖµÓòÊǸ÷¶ÎÉÏx¡¢yȡֵ·¶Î§µÄ²¢¼¯£¬·Ö¶Îº¯ÊýµÄÆæÅ¼ÐÔ¡¢µ¥µ÷ÐÔÒªÔÚ¸÷¶ÎÉÏ·Ö±ðÂÛÖ¤£»·Ö¶Îº¯ÊýµÄ×î´óÖµ£¬ÊǸ÷¶ÎÉÏ×î´óÖµÖеÄ×î´óÕߣ®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=x2+|x+1-a|£¬ÆäÖÐaΪʵ³£Êý£®
£¨¢ñ£©Èôa=1£¬ÅжÏf£¨x£©ÔÚ[-$\frac{1}{2}$£¬$\frac{1}{2}$]Éϵĵ¥µ÷ÐÔ£»
£¨¢ò£©Èô´æÔÚx¡ÊR£¬Ê¹²»µÈʽf£¨x£©¡Ü2|x-a|³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®É躯Êýf£¨x£©=|2x-4|+1£®
£¨1£©»­³öº¯Êýy=f£¨x£©µÄͼÏó£®
£¨2£©Èô¶ÔÈÎÒâx¡ÊR£¬f£¨x£©¡Ýa2-3aºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®º¯Êýy=$\sqrt{2}sin£¨{x-{{45}¡ã}}£©-sinx$£¨¡¡¡¡£©
A£®ÊÇÆæº¯Êýµ«²»ÊÇżº¯ÊýB£®ÊÇżº¯Êýµ«²»ÊÇÆæº¯Êý
C£®¼ÈÊÇÆæº¯ÊýÓÖÊÇżº¯ÊýD£®¼È²»ÊÇÆæº¯ÊýÓÖ²»ÊÇżº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;£¨a£¾b£¾0£©$µÄÓÒ½¹µãΪ$£¨\sqrt{2}£¬0£©$£¬ÇÒ¾­¹ýµã$£¨\frac{{\sqrt{2}}}{2}£¬-\frac{{\sqrt{7}}}{2}£©$£¬¹ýÍÖÔ²µÄ×ó¶¥µãA×÷Ö±Ïßl¡ÍxÖᣬµãMΪֱÏßlÉϵ͝µã£¨µãMÓëµãA²»Öغϣ©£¬µãBΪÍÖÔ²ÓÒ¶¥µã£¬Ö±ÏßBM½»ÍÖÔ²CÓÚµãP£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÇóÖ¤£ºAP¡ÍOM£»
£¨3£©ÊÔÎÊ$\overrightarrow{OP}•\overrightarrow{OM}$ÊÇ·ñΪ¶¨Öµ£¿ÈôÊǶ¨Öµ£¬ÇëÇó³ö¸Ã¶¨Öµ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Éèf£¨x£©ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬f£¨2£©=0£¬µ±x£¾0ʱ£¬ÓÐxf¡ä£¨x£©-f£¨x£©£¼0ºã³ÉÁ¢£¬Ôòxf£¨x£©£¾0µÄ½â¼¯Îª£¨¡¡¡¡£©
A£®£¨-2£¬0£©¡È£¨2£¬+¡Þ£©B£®£¨-2£¬0£©¡È£¨0£¬2£©C£®£¨-¡Þ£¬-2£©¡È£¨2£¬+¡Þ£©D£®£¨-¡Þ£¬-2£©¡È£¨0£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÔÚÈýÀâ×¶ÖÐA-BCD£¬A£¨0£¬0£¬2£©£¬B£¨4£¬4£¬0£©£¬C£¨4£¬0£¬0£©£¬D£¨0£¬4£¬3£©£¬ÈôÏÂÁÐÍø¸ñÖ½ÉÏСÕý·½Ðεı߳¤Îª1£¬ÔòÈýÀâ×¶A-BCDµÄÈýÊÓͼ²»¿ÉÄÜÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÉèÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÀëÐÄÂÊΪ$\frac{{2\sqrt{5}}}{5}$£¬¹ýµãF2ÇÒÓëxÖá´¹Ö±µÄÖ±Ïß±»ÍÖÔ²½ØµÃµÄÏ߶γ¤Îª$\frac{{2\sqrt{5}}}{5}$£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©Éè¹ýµãF2µÄÖ±ÏßlÓëÍÖÔ²ÏཻÓÚA£¬BÁ½µã£¬ÈôM£¨-6£¬0£©£¬Çóµ±Èý½ÇÐÎMABµÄÃæ»ýS×î´óֵʱֱÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=ln£¨x+2£©-x2+mx+nÔÚµãx=1´¦µÄÇÐÏßÓëÖ±Ïß3x+7y+1=0´¹Ö±£¬ÇÒf£¨-1£©=0£»
£¨1£©ÇóʵÊýmºÍnµÄÖµ£»
£¨2£©Çóº¯Êýf£¨x£©ÔÚÇø¼ä[0£¬3]ÉϵÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸