精英家教网 > 高中数学 > 题目详情
13.设f(x)是定义在R上的奇函数,f(2)=0,当x>0时,有xf′(x)-f(x)<0恒成立,则xf(x)>0的解集为(  )
A.(-2,0)∪(2,+∞)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2)∪(0,2)

分析 利用函数的导数,判断函数的单调性,结合函数的奇偶性直接利用数形结合求解即可.

解答 解:设g(x)=$\frac{f(x)}{x}$,当x>0时,有g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$<0成立,可得g(x)=$\frac{f(x)}{x}$,在x>0时是减函数,
∵函数f(x)是定义在R上的奇函数,f(2)=0,
∴g(x)是偶函数,且g(-2)=g(2)=0.

则当x>0时,不等式xf(x)>0等价为x2•$\frac{f(x)}{x}$>0,即x2•g(x)>0,即g(x)>0,
则当x<0时,不等式xf(x)>0等价为x2•$\frac{f(x)}{x}$>0,即x2•g(x)>0,即g(x)>0,
作出g(x)对应的草图如图:
则不等式g(x)>0的解集是:(-2,2).
当x=0时,不等式xf(x)>0不成立,
故不等式xf(x)>0的解集是:(-2,0)∪(0,2).
故选:B.

点评 本题考查不等式的求解,以及函数的导数的应用,根据条件构造函数,利用导数研究函数 单调性,以及利用数形结合的思想与方法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知圆C:x2+y2-4x-6y+9=0及直线l:2mx-3my+x-y-1=0(m∈R)
(1)证明:不论m取何值,直线l与圆C恒相交;
(2)求直线l被圆C截得的弦长最短时的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l1的参数方程$\left\{\begin{array}{l}{x=2+\sqrt{2}t}\\{y=1+\sqrt{2}t}\end{array}\right.$(t是参数),直线l2的极坐标方程为ρ(cosθ+sinθ)=2,则l1与l2的夹角是90°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.集合{1,2,3,…,n}(n≥3)中,每两个相异数作乘积,将所有这些乘积的和记为Tn,如:${T_3}=1×2+1×3+2×3=\frac{1}{2}[{6^2}-({1^2}+{2^2}+{3^2})]=11$;${T_4}=1×2+1×3+1×4+2×3+2×4+3×4=\frac{1}{2}[{10^2}-({1^2}+{2^2}+{3^2}+{4^2})]=35$;${T_5}=1×2+1×3+1×4+1×5+…+3×5+4×5=\frac{1}{2}[{15^2}-({1^2}+{2^2}+{3^2}+{4^2}+{5^2})]=85$
则T8=546.(写出计算结果)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入3万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=$\left\{\begin{array}{l}{9.4-\frac{1}{30}{x}^{2}(0≤x≤10)}\\{\frac{110}{x}-\frac{432}{{x}^{2}}(x>10)}\end{array}\right.$.
(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大?
(注:年利润=年销售收入-年总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为了调查每天微信用户使用微信的时间,某经销化妆品分微商在一广场随机采访男性、女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控非微信控合计
男性262450
女性302050
合计5644100
(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人赠送营养面膜各1份,再从抽取的这5人中再随机抽取3人赠送200元的护肤品套装,记这3人中“微信控”的人数为X,试求X的分布列和数学期望.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3213.8405.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3-3ax2+3a2x-a3(a∈R)的图象关于点(1,0)成中心对称.
(1)确定f(x)的解析式;
(2)求函数g(x)=f(x)-2x2在[-1,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)为定义在(-∞,+∞)上的可导函数,且f(x)>f′(x)对于x∈R恒成立(e为自然对数的底),则(  )
A.e2015•f(2016)>e2016•f(2015)
B.e2016•f(2016)=e2016•f(2015)
C.e2015•f(2016)<e2016•f(2015)
D.e2015•f(2016)与e2016•f(2015)大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图所示的数阵中,第20行第2个数字是$\frac{1}{191}$.

查看答案和解析>>

同步练习册答案