精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=ln(x+2)-x2+mx+n在点x=1处的切线与直线3x+7y+1=0垂直,且f(-1)=0;
(1)求实数m和n的值;
(2)求函数f(x)在区间[0,3]上的最小值.

分析 (1)与直线3x+7y+2=0垂直的直线的斜率为 $\frac{7}{3}$,令f′(1)=$\frac{7}{3}$,得m,又f(-1)=0,求出n;
(2)f′(x)=$\frac{1}{x+2}$-2x+4,由f′(x)=0,得x=$\frac{3\sqrt{2}}{2}$,然后求解极值与端点值,由此能求出以f(x)在[0,3]最小值.

解答 解:(1)与直线3x+7y+2=0垂直的直线的斜率为$\frac{7}{3}$,
令f′(1)=$\frac{7}{3}$,得m=4,
∵f(-1)=ln(2-1)-1-4+n=0,
∴n=5;
(2)f′(x)=$\frac{1}{x+2}$-2x+4,
由f′(x)=0,得x=$\frac{3\sqrt{2}}{2}$,
当x∈[0,$\frac{3\sqrt{2}}{2}$]时,f′(x)≥0,f(x)单调递增;
当x∈($\frac{3\sqrt{2}}{2}$,3]时,f′(x)≤0,f(x)单调递减.
∵f(0)=ln2+5,f(3)=ln5+8,
所以f(x)在[0,3]最小值为ln2+5.

点评 本题考查利用导数的性质求函数在闭区间上的最小值,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入3万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=$\left\{\begin{array}{l}{9.4-\frac{1}{30}{x}^{2}(0≤x≤10)}\\{\frac{110}{x}-\frac{432}{{x}^{2}}(x>10)}\end{array}\right.$.
(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大?
(注:年利润=年销售收入-年总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
优秀非优秀总计
甲班10
乙班30
合计105
已知在全部105人中随机抽取一人为优秀的概率为$\frac{2}{7}$.
(1)请完成上面的列联表;
(2)根据列联表的数据,若按97.5%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到8或9号的概率.
参考公式和数据:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,线段AB在平面α内,线段AC⊥α,线段BD⊥AB,且AB=1,AC=BD=4,BD与α所成角的正弦值为$\frac{1}{4}$,则CD=(  )
A.5B.$\frac{11}{2}$C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知曲线C的参数方程为$\left\{\begin{array}{l}x=2+cosθ\\ y=1+sinθ\end{array}\right.$(θ∈[0,π]),且点P(x,y)在曲线C上,则$\frac{y-1}{x}$的取值范围是(  )
A.$[{0,\frac{{\sqrt{3}}}{3}}]$B.$[{0,\frac{{\sqrt{3}}}{2}}]$C.$[{1,\frac{{\sqrt{3}}}{3}}]$D.$[{0,\sqrt{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图所示的数阵中,第20行第2个数字是$\frac{1}{191}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如x2+y2+x+a=0表示圆,则a的取值范围是(-∞,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.用数学归纳法证明:12+32+52+…+(2n-1)2=$\frac{1}{3}$n(4n2-1)(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}是首项为a,公差为b的等差数列,数列{bn}是首项为b,公比为a的等比数列,且a1<b1<a2<b2<a3,其中a,b,m,n∈N*
(Ⅰ)求a的值;
(Ⅱ)若数列{1+am}与数列{bn}有公共项,将所有公共项按原来顺序排列后构成一个新数列{cn},求数列{cn}的通项公式;
(Ⅲ)设dm=$\frac{a_m}{2m}$,m∈N*,求证:$\frac{1}{{1+{d_1}}}$+$\frac{2}{{(1+{d_1})(1+{d_2})}}$+…+$\frac{n}{{(1+{d_1})(1+{d_2})…(1+{d_n})}}$<2.

查看答案和解析>>

同步练习册答案