精英家教网 > 高中数学 > 题目详情
6.如图,线段AB在平面α内,线段AC⊥α,线段BD⊥AB,且AB=1,AC=BD=4,BD与α所成角的正弦值为$\frac{1}{4}$,则CD=(  )
A.5B.$\frac{11}{2}$C.6D.7

分析 过B作BE⊥α于B,且BE=24,连接CE、DE,利用线段BD与平面α所成的角,求出ED,即可得出结论..

解答 解:过B作BE⊥α于B,且BE=4(目的是把AC平移到BE),
连接CE、DE,
∵BD⊥AB、BE⊥AB,∴CE⊥平面BDE,∴∠CED=90°,
∵BD与α所成角的正弦值为$\frac{1}{4}$,BE=4,BD=4
∴ED=$\sqrt{16+16-2×4×4×\frac{1}{4}}$=2$\sqrt{6}$
在Rt△CDE中,CE=1,CD=$\sqrt{24+1}$=5.
故选A.

点评 本题考查线面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数y=$\sqrt{2}sin({x-{{45}°}})-sinx$(  )
A.是奇函数但不是偶函数B.是偶函数但不是奇函数
C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,离心率为$\frac{{2\sqrt{5}}}{5}$,过点F2且与x轴垂直的直线被椭圆截得的线段长为$\frac{{2\sqrt{5}}}{5}$.
(1)求椭圆的方程;
(2)设过点F2的直线l与椭圆相交于A,B两点,若M(-6,0),求当三角形MAB的面积S最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.点M的极坐标$(4,\frac{5π}{6})$化成直角坐标的结果是$(-2\sqrt{3},2)$..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.P点在曲线$\left\{\begin{array}{l}x=4+2cosθ\\ y=2sinθ\end{array}$上,点Q在曲线θ=$\frac{π}{4}$(ρ∈R)上,则|PQ|的最小值为2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{{\sqrt{6}}}{3}$,坐标原点到直线l:y=bx+2的距离为$\sqrt{2}$,
(1)求椭圆的方程;
(2)若直线y=kx+2(k≠0)与椭圆相交于C、D两点,是否存在实数k,使得以CD为直径的圆过点E(-1,0)?若存在,求出k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ln(x+2)-x2+mx+n在点x=1处的切线与直线3x+7y+1=0垂直,且f(-1)=0;
(1)求实数m和n的值;
(2)求函数f(x)在区间[0,3]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线E:y2=2px(p>0)的准线方程为x=-$\frac{1}{16}$.
(1)求抛物线的方程;
(2)定长为2的线段MN的两端点在抛物线E上移动,O为坐标原点,点P满足$\frac{\overrightarrow{OM}+\overrightarrow{ON}}{2}$=$\overrightarrow{OP}$,求点P到y轴距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.tan17°+tan28°+tan17°tan28°等于(  )
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.-1D.1

查看答案和解析>>

同步练习册答案