精英家教网 > 高中数学 > 题目详情
1.P点在曲线$\left\{\begin{array}{l}x=4+2cosθ\\ y=2sinθ\end{array}$上,点Q在曲线θ=$\frac{π}{4}$(ρ∈R)上,则|PQ|的最小值为2$\sqrt{2}$-2.

分析 P点在曲线$\left\{\begin{array}{l}x=4+2cosθ\\ y=2sinθ\end{array}$上,利用平方关系化为:(x-4)2+y2=4.点Q在曲线θ=$\frac{π}{4}$(ρ∈R)上,可得直线:y=x.求出圆心(4,0)到直线的距离d,即可得出.

解答 解:P点在曲线$\left\{\begin{array}{l}x=4+2cosθ\\ y=2sinθ\end{array}$上,化为:(x-4)2+y2=4.
点Q在曲线θ=$\frac{π}{4}$(ρ∈R)上,可得直线:y=x.
则圆心(4,0)到直线的距离d=$\frac{4}{\sqrt{2}}$=2$\sqrt{2}$.
则|PQ|的最小值=2$\sqrt{2}$-2.
故答案为:2$\sqrt{2}$-2.

点评 本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数,根据合情推理试猜测第七个三角形有(  )个石子
A.28B.21C.36D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow a$=(sinθ,-1)与$\overrightarrow b$=(2,cosθ)互相垂直,其中θ∈(0,π).
(1)求sinθ和cosθ的值;
(2)求$cos(θ+\frac{π}{4})$值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
优秀非优秀总计
甲班10
乙班30
合计105
已知在全部105人中随机抽取一人为优秀的概率为$\frac{2}{7}$.
(1)请完成上面的列联表;
(2)根据列联表的数据,若按97.5%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到8或9号的概率.
参考公式和数据:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知椭圆C:$\frac{x^2}{4}+{y^2}$=1,过点D(0,4)的直线l与椭圆C交于不同两点M,N(M在D,N之间),有以下四个结论:
①若$\overrightarrow{DN}=λ\overrightarrow{DM}$,则λ的取值范围是1<λ≤$\frac{5}{3}$;
②若A是椭圆C的右顶点,且∠MAN的角平分线是x轴,则直线l的斜率为-2;
③若以MN为直径的圆过原点O,则直线l的斜率为±2$\sqrt{5}$;
④若$\left\{{\begin{array}{l}{{x^'}=x}\\{{y^'}=2y}\end{array}}$,椭圆C变成曲线E,点M,N变成M′,N′,曲线E与y轴交于点P,Q,则直线PN′与QM′的交点必在一条定直线上.
其中正确的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,线段AB在平面α内,线段AC⊥α,线段BD⊥AB,且AB=1,AC=BD=4,BD与α所成角的正弦值为$\frac{1}{4}$,则CD=(  )
A.5B.$\frac{11}{2}$C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知曲线C的参数方程为$\left\{\begin{array}{l}x=2+cosθ\\ y=1+sinθ\end{array}\right.$(θ∈[0,π]),且点P(x,y)在曲线C上,则$\frac{y-1}{x}$的取值范围是(  )
A.$[{0,\frac{{\sqrt{3}}}{3}}]$B.$[{0,\frac{{\sqrt{3}}}{2}}]$C.$[{1,\frac{{\sqrt{3}}}{3}}]$D.$[{0,\sqrt{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如x2+y2+x+a=0表示圆,则a的取值范围是(-∞,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,其焦点与椭圆上最近点的距离为2-$\sqrt{2}$.
(1)求椭圆的方程;
(2)若A,B分别是椭圆的左右顶点,动点M满足$\overrightarrow{MB}$•$\overrightarrow{AB}$=0,且MA交椭圆于点P.
①求$\overrightarrow{OP}$•$\overrightarrow{OM}$的值;
②设PB与以PM为直径的圆的另一交点为Q,求证:直线MQ过定点.

查看答案和解析>>

同步练习册答案