精英家教网 > 高中数学 > 题目详情
3.在平面直角坐标系xOy中,已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的右焦点为$(\sqrt{2},0)$,且经过点$(\frac{{\sqrt{2}}}{2},-\frac{{\sqrt{7}}}{2})$,过椭圆的左顶点A作直线l⊥x轴,点M为直线l上的动点(点M与点A不重合),点B为椭圆右顶点,直线BM交椭圆C于点P.
(1)求椭圆C的方程;
(2)求证:AP⊥OM;
(3)试问$\overrightarrow{OP}•\overrightarrow{OM}$是否为定值?若是定值,请求出该定值;若不是,请说明理由.

分析 (1)由c=$\sqrt{2}$,椭圆过点$(\frac{{\sqrt{2}}}{2},-\frac{{\sqrt{7}}}{2})$,结合a、b、c的关系列出方程组,求出a2和b2即可;
(2)根据题意直线BM的斜率存在,设出BM的方程,与椭圆方程联立消去y,
求出点P的横坐标,从而求出yP,写出$\overrightarrow{AP}$、$\overrightarrow{OM}$的坐标表示,利用$\overrightarrow{OM}$•$\overrightarrow{AP}$=0证明AP⊥OM;
(3)写出$\overrightarrow{OP}$的坐标表示,计算$\overrightarrow{OP}$•$\overrightarrow{OM}$即可得出结论.

解答 解:(1)由已知得c=$\sqrt{2}$①,
又$\frac{1}{{2a}^{2}}$+$\frac{7}{{4b}^{2}}$=1②,
a2=b2+c2③;
联立①②③,
解得a2=4,b2=2;
所以椭圆C的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1;
(2)证明:由(1)知,A(-2,0),B(2,0),直线BM斜率显然存在,
设BM方程为y=k(x-2),则M(-2,-4k),
由$\left\{\begin{array}{l}{y=k(x-2)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,消去y得
(2k2+1)x2-8k2+8k2-4=0,
解得x1=$\frac{{4k}^{2}-2}{{2k}^{2}+1}$,x2=2;
∴xP=$\frac{{4k}^{2}-2}{{2k}^{2}+1}$,
∴yP=k(xP-2)=$\frac{-4k}{{2k}^{2}+1}$,
即P($\frac{{4k}^{2}-2}{{2k}^{2}+1}$,$\frac{-4k}{{2k}^{2}+1}$);
又$\overrightarrow{AP}$=($\frac{{8k}^{2}}{{2k}^{2}+1}$,$\frac{-4k}{{2k}^{2}+1}$),
$\overrightarrow{OM}$=(-2,-4k);
∴$\overrightarrow{OM}$•$\overrightarrow{AP}$=$\frac{-1{6k}^{2}}{{2k}^{2}+1}$+$\frac{1{6k}^{2}}{{2k}^{2}+1}$=0,
∴$\overrightarrow{OM}$⊥$\overrightarrow{AP}$,即AP⊥OM;
(3)∵$\overrightarrow{OP}$=($\frac{{4k}^{2}-2}{{2k}^{2}+1}$,$\frac{-4k}{{2k}^{2}+1}$),
∴$\overrightarrow{OP}$•$\overrightarrow{OM}$=$\frac{-2({4k}^{2}-2)}{{2k}^{2}+1}$+$\frac{(-4k)(-4k)}{{2k}^{2}+1}$=$\frac{{8k}^{2}+4}{{2k}^{2}+1}$=4;
∴$\overrightarrow{OP}$•$\overrightarrow{OM}$为定值4.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、一元二次方程根与系数的关系以及向量垂直的数量积关系,也考查了推理与计算能力,是难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.直线$\frac{x}{4}+\frac{y}{3}$=1与椭圆$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}$=1相交于A,B两点,该椭圆上点P使得△PAB面积为2,这样的点P共有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=mx3-3(m+1)x2+nx+1在x=1处有极值m,n∈R
(Ⅰ)求m与n的关系式;
(Ⅱ)当m=-2时,求f(x)的单调区间及极小值点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数,根据合情推理试猜测第七个三角形有(  )个石子
A.28B.21C.36D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在极坐标系中,点M(2,$\frac{π}{3}$)到直线l:ρsin(θ+$\frac{π}{4}$)=$\frac{{\sqrt{2}}}{2}$的距离为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{3}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入3万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=$\left\{\begin{array}{l}{9.4-\frac{1}{30}{x}^{2}(0≤x≤10)}\\{\frac{110}{x}-\frac{432}{{x}^{2}}(x>10)}\end{array}\right.$.
(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大?
(注:年利润=年销售收入-年总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列说法中正确的是.(  )
①独立性检验的基本思想是带有概率性质的反证法;
②独立性检验就是选取一个假设Ho条件下的小概率事件,若在一次试验中该事件发生了,这是与实际推断相抵触的“不合理”现象,则作出拒绝Ho的推断;
③独立性检验一定能给出明确的结论.
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow a$=(sinθ,-1)与$\overrightarrow b$=(2,cosθ)互相垂直,其中θ∈(0,π).
(1)求sinθ和cosθ的值;
(2)求$cos(θ+\frac{π}{4})$值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知曲线C的参数方程为$\left\{\begin{array}{l}x=2+cosθ\\ y=1+sinθ\end{array}\right.$(θ∈[0,π]),且点P(x,y)在曲线C上,则$\frac{y-1}{x}$的取值范围是(  )
A.$[{0,\frac{{\sqrt{3}}}{3}}]$B.$[{0,\frac{{\sqrt{3}}}{2}}]$C.$[{1,\frac{{\sqrt{3}}}{3}}]$D.$[{0,\sqrt{3}}]$

查看答案和解析>>

同步练习册答案