精英家教网 > 高中数学 > 题目详情
10.已知数列{an}中,${a_1}=1,{a_2}=\frac{1}{4}$,且$\frac{1}{{n{a_{n+1}}}}=\frac{1}{{(n-1){a_n}}}-\frac{1}{n(n-1)}(n≥2,n∈N)$.  
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:对一切n∈N*,有$a_1^2+a_2^2+…+a_n^2<\frac{7}{6}$.

分析 (I)利用“累加求和”与“裂项求和”方法即可得出.
(Ⅱ)当k≥2,有$a_k^2=\frac{1}{{{{(3k-2)}^2}}}<\frac{1}{(3k-4)(3k-1)}=\frac{1}{3}(\frac{1}{3k-4}-\frac{1}{3k-1})$,利用“裂项求和”方法与数列的单调性即可证明.

解答 (Ⅰ)解:由已知,对n≥2,$\frac{1}{{n{a_{n+1}}}}=\frac{1}{{(n-1){a_n}}}-\frac{1}{n(n-1)}$,
即  $\frac{1}{{n{a_{n+1}}}}-\frac{1}{{(n-1){a_n}}}=-(\frac{1}{n-1}-\frac{1}{n})$,
于是,$\sum_{k=2}^{n-1}{[{\frac{1}{{k{a_{k+1}}}}-\frac{1}{{(k-1){a_k}}}}]}=-\sum_{k=2}^{n-1}{({\frac{1}{k-1}-\frac{1}{k}})}=-(1-\frac{1}{n-1})$,
即 $\frac{1}{{(n-1){a_n}}}-\frac{1}{a_2}=-(1-\frac{1}{n-1}),n≥2$,
∴$\frac{1}{{(n-1){a_n}}}=\frac{1}{a_2}-(1-\frac{1}{n-1})=\frac{3n-2}{n-1}$,${a_n}=\frac{1}{3n-2},n≥2$.
又n=1时也成立,故${a_n}=\frac{1}{3n-2},n∈{N^*}$.
(Ⅱ)证明:当k≥2,有$a_k^2=\frac{1}{{{{(3k-2)}^2}}}<\frac{1}{(3k-4)(3k-1)}=\frac{1}{3}(\frac{1}{3k-4}-\frac{1}{3k-1})$,
∴n≥2时,有$\sum_{k=1}^n{a_k^2}=1+\sum_{k=2}^n{a_k^2}<1+\frac{1}{3}[{(\frac{1}{2}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{8})+…+(\frac{1}{3n-4}-\frac{1}{3n-1})}]$=$1+\frac{1}{3}({\frac{1}{2}-\frac{1}{3n-1}})<1+\frac{1}{6}=\frac{7}{6}$.
又n=1时,$a_1^2=1<\frac{7}{6}$.
故对一切n∈N*,有$\sum_{k=1}^n{a_k^2}<\frac{7}{6}$.

点评 本题考查了“累加求和”、“裂项求和”方法、数列的单调性,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,PD⊥平面ABCD,AD⊥DC,AD∥BC,PD:DC:BC=1:1:$\sqrt{2}$.
(1)若AD=$\frac{1}{2}$BC,求直线CD与平面PAB所成角的大小;
(2)设PD=a,且二面角A-PB-C的大小为$\frac{π}{3}$,求AD长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点${F_1}(-\sqrt{2},0),{F_2}(\sqrt{2},0)$,点$P(1,\frac{{\sqrt{6}}}{3})$在此椭圆上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN的斜率分别为k1,k2,求证:k1+k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2+|x+1-a|,其中a为实常数.
(Ⅰ)若a=1,判断f(x)在[-$\frac{1}{2}$,$\frac{1}{2}$]上的单调性;
(Ⅱ)若存在x∈R,使不等式f(x)≤2|x-a|成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过点(2,0)引直线l与曲线$y=\sqrt{2-{x^2}}$相交于A,B两点,O为坐标原点,当△AOB的面积取最大值时,直线l的斜率等于(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\sqrt{3}$C.$±\frac{{\sqrt{3}}}{3}$D.$-\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=x2+bx+c,且f(-1)=f(3),则(  )
A.f(1)<f(-1)<cB.f(-1)<c<f(1)C.f(1)<c<f(3)D.c<f(3)<f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出下列命题,正确的命题是(  )
A.底面是矩形的平行六面体是长方体
B.底面是正方形的直平行六面体是正四棱柱
C.底面是正方形的直四棱柱是正方体
D.所有棱长都相等的直平行六面体是正方体

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=|2x-4|+1.
(1)画出函数y=f(x)的图象.
(2)若对任意x∈R,f(x)≥a2-3a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在三棱锥中A-BCD,A(0,0,2),B(4,4,0),C(4,0,0),D(0,4,3),若下列网格纸上小正方形的边长为1,则三棱锥A-BCD的三视图不可能是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案