精英家教网 > 高中数学 > 题目详情
9.已知P为椭圆$\frac{x^2}{36}+\frac{y^2}{9}=1$上的任意一点,O为坐标原点,M在线段OP上,且$\overrightarrow{OM}=\frac{1}{3}\overrightarrow{OP}$
(1)求点M的轨迹E的方程;
(2)若A(-4,0),B(0,4),C为轨迹E上的动点,求△ABC面积的最大值.

分析 (1)设出M,P的坐标,由向量等式把P的坐标用M的坐标表示,代入椭圆方程整理可得点M的轨迹E的方程;
(2)写出直线AB的截距式方程,再设出与直线AB平行的直线l的方程为x-y+m=0,与椭圆方程联立,利用判别式等于0求得m值,结合三角形面积公式得答案.

解答 解:(1)设M(x,y),P(x0,y0),
由$\overrightarrow{OM}=\frac{1}{3}\overrightarrow{OP}$,得$({x,y})=\frac{1}{3}({{x_0},{y_0}})⇒\left\{\begin{array}{l}{x_0}=3x\\{y_0}=3y\end{array}\right.$,
∵P(x0,y0)在椭圆上,
∴$\frac{{{x_0}^2}}{36}+\frac{{{y_0}^2}}{9}=1$,即$\frac{9{x}^{2}}{36}+\frac{9{y}^{2}}{9}=1$,则$\frac{x^2}{4}+{y^2}=1$,
∴点M的轨迹E的方程为$\frac{x^2}{4}+{y^2}=1$;
(2)由题意可得直线AB的方程为x-y+4=0,
设与直线AB平行的直线l的方程为x-y+m=0,
由$\left\{{\begin{array}{l}{x-y+m=0}\\{\frac{x^2}{4}+{y^2}=1}\end{array}}\right.$,得5x2+8mx+4m2-4=0.
令△=0,得64m2-4×5×(4m2-4)=0,解得$m=±\frac{5}{4}$,
∵△ABC的面积$S=\frac{1}{2}\sqrt{{4^2}+{4^2}}\frac{{|{m-4}|}}{{\sqrt{2}}}=2|{m-4}|$,
∴当$m=-\frac{5}{4}$时,△ABC的面积有最大值为$\frac{21}{2}$.

点评 本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在正三棱柱ABC-A1B1C1中,AB=2,点D、E分别是棱AB、BB1的中点,若DE⊥EC1,则侧棱AA1的长为(  )
A.1B.2C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设G为△ABC的重心,a,b,c分别为角A,B,C的对边,若35a$\overrightarrow{GA}$+21b$\overrightarrow{GB}$+15c$\overrightarrow{GC}$=$\overrightarrow{0}$,则sinC=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1,F2分别是它的左、右焦点,已知椭圆C过点(0,1),且离心率e=$\frac{2\sqrt{2}}{3}$.
(1)求椭圆C的方程;
(2)如图,设椭圆的左、右顶点分别为A、B,直线l的方程为x=4,P是椭圆上异于A、B的任意一点,直线PA、PB分别交直线l于D、E两点,求证$\overrightarrow{{F}_{1}D}$•$\overrightarrow{{F}_{2}E}$为一定值,并求出这一定值;
(3)是否存在过点Q(1,0)的直线m(与x轴不垂直)与椭圆C交于M、N两点,使 $\overrightarrow{M{F}_{1}}$⊥$\overrightarrow{N{F}_{1}}$,若存在,求出l的斜率,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.正三棱柱ABC-A′B′C′的A′A=AB=2,则点A到BC′的距离为$\frac{{\sqrt{14}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=mx3-3(m+1)x2+nx+1在x=1处有极值m,n∈R
(Ⅰ)求m与n的关系式;
(Ⅱ)当m=-2时,求f(x)的单调区间及极小值点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.f(x)=kx-lnx在区间(1,+∞)上是减函数,k的取值范围是(  )
A.(-∞,0)B.(-∞,0]C.(-∞,1)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在极坐标系中,点M(2,$\frac{π}{3}$)到直线l:ρsin(θ+$\frac{π}{4}$)=$\frac{{\sqrt{2}}}{2}$的距离为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{3}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若f(x)=x2+2(a-1)x+4是区间(-∞,4]上的减函数,则实数a的取值范围是a≤-3.

查看答案和解析>>

同步练习册答案