精英家教网 > 高中数学 > 题目详情
19.在正三棱柱ABC-A1B1C1中,AB=2,点D、E分别是棱AB、BB1的中点,若DE⊥EC1,则侧棱AA1的长为(  )
A.1B.2C.$\sqrt{2}$D.$2\sqrt{2}$

分析 设侧棱AA1的长为2x,则由题意,可得4+x2+1+x2=4x2+(2×$\frac{\sqrt{3}}{2}$ )2,求出x,即可得出结论

解答 解:取A1B1的中点D1
连接DD1,C1D1,DC1

设侧棱AA1的长为2x,
则由题意,可得4+x2+1+x2=4x2+(2×$\frac{\sqrt{3}}{2}$ )2
∴x=1,2x=2.
故选:B.

点评 本题考查侧棱AA1的长的计算,考查勾股定理的运用,正确运用勾股定理是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,焦距为4,且经过点(2,-3).若点P在椭圆上,且在x轴上方,$\overrightarrow{P{F}_{1}}$•$\overrightarrow{{F}_{1}{F}_{2}}$=0.
(1)求椭圆C的方程;
(2)①求△PF1F2的内切圆M的方程;
②若直线l过△PF1F2的内切圆圆心M,交椭圆于A,B两点,且A,B关于点M对称,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PD⊥底面ABCD,且$PD=CD=\frac{{\sqrt{2}}}{2}BC$,过棱PC的中点AB1⊥PQ,作EF⊥PB交PB于点PQD,连接DE,DF,BD,BE.
(1)证明:PB⊥平面DEF.
(2)求异面直线与BE所成角的余弦值及二面角B-DE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数y=f(x)的图象关于原点对称,且当x∈(-∞,0),f(x)+xf′(x)<0成立,若a=(-2)×f(-2),b=f(1),c=3×f(3),则a,b,c的关系大小是(  )
A.b>a>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.关于x的方程2sinx-cos2x=m的解集是空集,则实数m的取值范围是(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆中心在原点,焦点在y轴上,且过点A(0,1),离心率为$\frac{{\sqrt{3}}}{2}$,设直线方程为y=x+m.
(Ⅰ)求椭圆标准方程
(Ⅱ)当m为何值时,直线与椭圆有公共点?
(Ⅲ)若直线被椭圆截得的弦长为$\frac{2\sqrt{10}}{5}$,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.对于函数f(x),若存在实数M>0,使得对于定义域内的任意的x,使得函数|f(x)|≤M,则称函数f(x)为有界函数,下列函数是有界函数的是④⑤⑥
①y=2x+1
②y=-x2+2x
③y=2x-1
④y=lnx(x∈(1,e])
⑤y=2-|x|
⑥$y=\frac{x}{|x|+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个多面体的三视图如图所示,则此多面体的表面积是(  )
A.10B.12C.8+4$\sqrt{2}$D.12+4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知P为椭圆$\frac{x^2}{36}+\frac{y^2}{9}=1$上的任意一点,O为坐标原点,M在线段OP上,且$\overrightarrow{OM}=\frac{1}{3}\overrightarrow{OP}$
(1)求点M的轨迹E的方程;
(2)若A(-4,0),B(0,4),C为轨迹E上的动点,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案