精英家教网 > 高中数学 > 题目详情
4.已知椭圆中心在原点,焦点在y轴上,且过点A(0,1),离心率为$\frac{{\sqrt{3}}}{2}$,设直线方程为y=x+m.
(Ⅰ)求椭圆标准方程
(Ⅱ)当m为何值时,直线与椭圆有公共点?
(Ⅲ)若直线被椭圆截得的弦长为$\frac{2\sqrt{10}}{5}$,求直线的方程.

分析 (Ⅰ)由已知,求出a,b,c的值,可得椭圆的标准方程;
(Ⅱ)将直线的方程y=x+m与椭圆的方程4x2+y2=1联立,得到5x2+2mx+m2-1=0,利用△=-16m2+20≥0即可求得m的取值范围;
(Ⅲ)利用两点间的距离公式,再借助于韦达定理即可得到:两交点AB之间的距离|AB|=$\sqrt{2}$ $\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{2\sqrt{10}}{5}$,从而可求得m的值.

解答 (本小题满分10分)
解:(Ⅰ)∵椭圆中心在原点,焦点在y轴上,且过点A(0,1),离心率为$\frac{{\sqrt{3}}}{2}$,
∴a=1,$\frac{c}{a}$=$\frac{{\sqrt{3}}}{2}$,
∴c=$\frac{{\sqrt{3}}}{2}$,
∴b=$\frac{1}{2}$,
∴椭圆的标准方程为:${y}^{2}+\frac{{x}^{2}}{\frac{1}{4}}=1$,即4x2+y2=1:
(Ⅱ)把直线y=x+m代入椭圆方程得:4x2+(x+m)2=1
即:5x2+2mx+m2-1=0,
△=(2m)2-4×5×(m2-1)=-16m2+20≥0
解得:-$\frac{\sqrt{5}}{2}$≤m≤$\frac{\sqrt{5}}{2}$.
(Ⅲ)设该直线与椭圆相交于两点A(x1,y1),B(x2,y2),
则x1,x2是方程5x2+2mx+m2-1=0的两根,
由韦达定理可得:x1+x2=-$\frac{2m}{5}$,x1•x2=$\frac{{m}^{2}-1}{5}$,
∴|AB|=$\sqrt{2}$ $\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2[(-\frac{2m}{5})^{2}-4×\frac{{m}^{2}-1}{5})}$=$\frac{2\sqrt{10}}{5}$;
∴m=0.
∴直线的方程为y=x.

点评 本题考查直线与圆锥曲线的位置关系与弦长问题,难点在于弦长公式的灵活应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知点A(1,0),B(0,1),C(2sinθ,cosθ).
(1)若|$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,求$\frac{sinθ+2cosθ}{sinθ-cosθ}$的值;
(2)若($\overrightarrow{OA}$+2$\overrightarrow{OB}$)•$\overrightarrow{OC}$=1,其中O为坐标原点,求sinθ•cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2-ax+lnx(a∈R).
(1)若函数f(x)在x=1处取得极小值,求函数f(x)的极大值;
(2)若x∈(0,e]时,函数f(x)≤1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.极坐标系中,圆心在$(1,\frac{π}{4})$,半径为1的圆的方程为(  )
A.$ρ=2sin(θ-\frac{π}{4})$B.$ρ=2cos(θ-\frac{π}{4})$C.$ρcos(θ-\frac{π}{4})=2$D.$ρsin(θ-\frac{π}{4})=2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在正三棱柱ABC-A1B1C1中,AB=2,点D、E分别是棱AB、BB1的中点,若DE⊥EC1,则侧棱AA1的长为(  )
A.1B.2C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在△ABC中,∠BAC=90°,AB=AC=2,AD⊥BC于D.将△ADC沿AD翻折至△ADC′,下列说法中正确的是①③④(写出所有正确命题的序号)
①AD⊥BC′;    
②BC′可能与平面△ADC′垂直;
③D-ABC′可能是正三棱锥;
④三棱锥D-ABC′体积的最大值为$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点分别为F1,F2,点A在椭圆上,AF2⊥x轴,若$\frac{{|A{F_1}|}}{{|A{F_2}|}}=\frac{5}{3}$,则椭圆的离心率等于(  )
A.2B.$\frac{1}{5}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线$\frac{x}{4}+\frac{y}{3}$=1与椭圆$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{9}$=1相交于A,B两点,该椭圆上点P使得△PAB面积为2,这样的点P共有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=mx3-3(m+1)x2+nx+1在x=1处有极值m,n∈R
(Ⅰ)求m与n的关系式;
(Ⅱ)当m=-2时,求f(x)的单调区间及极小值点.

查看答案和解析>>

同步练习册答案