精英家教网 > 高中数学 > 题目详情
9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,焦距为4,且经过点(2,-3).若点P在椭圆上,且在x轴上方,$\overrightarrow{P{F}_{1}}$•$\overrightarrow{{F}_{1}{F}_{2}}$=0.
(1)求椭圆C的方程;
(2)①求△PF1F2的内切圆M的方程;
②若直线l过△PF1F2的内切圆圆心M,交椭圆于A,B两点,且A,B关于点M对称,求直线l的方程.

分析 (1)椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)焦点在x轴上,2c=4,c=2,则a2=b2+4,将点(2,-3)代入椭圆方程:$\frac{4}{{b}^{2}+4}+\frac{9}{{b}^{2}}=1$.即可求得a和b的值,求得椭圆方程;
(2)①由(1)可知:c=2,F1(-2,0),由$\overrightarrow{P{F}_{1}}$•$\overrightarrow{{F}_{1}{F}_{2}}$=0,由PF1⊥F1F2,代入椭圆方程得$\frac{4}{16}+\frac{{y}_{P}^{2}}{12}=1$,求得P点坐标,则在Rt△PF1F2中,丨PF1丨=3,丨F1F2丨=4,丨PF2丨=5,则r=$\frac{3+4-5}{2}$=1,即M(-1,1),则圆方程为:(x+1)2+(y-1)2=1;
②设直线l:y=k(x+1)+1,代入椭圆方程,由A,B关于点M(-1,1)对称,$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{1}{2}$•$\frac{8k(k+1)}{4{k}^{2}+3}$=-1,解得:k=$\frac{3}{4}$,即可求得椭圆方程.

解答 解:(1)椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)焦点在x轴上,2c=4,c=2,
则a2=b2+4,
将点(2,-3)代入椭圆方程:$\frac{4}{{b}^{2}+4}+\frac{9}{{b}^{2}}=1$.解得:a2=16,b2=12,
则椭圆C的方程为:$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$.                                     …(5分)
(2)①由(1)可知:c=2,F1(-2,0),由$\overrightarrow{P{F}_{1}}$•$\overrightarrow{{F}_{1}{F}_{2}}$=0,
∴PF1⊥F1F2
设点P(-2,yP)(yP>0),代入椭圆方程得$\frac{4}{16}+\frac{{y}_{P}^{2}}{12}=1$,从而yP=3,
即P(-2,3),…(7分)
则在Rt△PF1F2中,丨PF1丨=3,丨F1F2丨=4,丨PF2丨=5,
设内切圆半径为r,圆心坐标为M(xM,yM),则r=$\frac{3+4-5}{2}$=1,xM=-2+1=-1,yM=1,即M(-1,1),
故所求圆方程为:(x+1)2+(y-1)2=1,…(10分)
②设A(x1,y1),B(x2,y2),由题意知直线AB斜率k,存在且不等于0,故设直线l:y=k(x+1)+1,
$\left\{\begin{array}{l}{y=k(x+1)+1}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1}\end{array}\right.$,整理得:(4k2+3)x2+8k(k+1)x+4(k+1)2-48=0,
由A,B关于点M(-1,1)对称,
∴$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{1}{2}$•$\frac{8k(k+1)}{4{k}^{2}+3}$=-1,解得:k=$\frac{3}{4}$,…(15分)
所以,直线l的方程为:y-1=$\frac{3}{4}$(x+1),即3x-4y+7-0.                  …(16分)

点评 本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,三角形内切圆的方程,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年安徽六安一中高一上国庆作业二数学试卷(解析版) 题型:选择题

若函数的定义域是,则函数的定义域是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知一个椭圆的焦点在x轴上、离心率为$\frac{{\sqrt{3}}}{2}$,右焦点到右准线($x=\frac{a^2}{c}$)的距离为$\frac{{\sqrt{3}}}{3}$.
(1)求椭圆的标准方程;
(2)一条直线经过椭圆的一个焦点且斜率为1,求直线与椭圆的两个交点之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数y=f(x)的定义域为D,值域为A,如果存在函数x=g(t),使得函数y=f[g(t)]的值域仍是A,那么称x=g(t)是函数y=f(x)的一个等值域变换.设f(x)=log2x的定义域为[2,8],已知x=g(t)=$\frac{{m{t^2}-nt+m}}{{{t^2}+1}}({m∈R,n∈{R_+}})$是y=f(x)的一个等值变换,且函数y=f[g(t)]的定义域为R,则m=5,n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.坛子里放着5个相同大小,相同形状的咸鸭蛋,其中有3个是绿皮的,2个是白皮的.如果不放回地依次拿出2个鸭蛋,求:
(1)第一次拿出绿皮鸭蛋的概率;
(2)第1次和第2次都拿到绿皮鸭蛋的概率;
(3)在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点A(1,0),B(0,1),C(2sinθ,cosθ).
(1)若|$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,求$\frac{sinθ+2cosθ}{sinθ-cosθ}$的值;
(2)若($\overrightarrow{OA}$+2$\overrightarrow{OB}$)•$\overrightarrow{OC}$=1,其中O为坐标原点,求sinθ•cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{1}{2}$x2-5x+4lnx.
(1)求函数f(x)的定义域并求函数f(x)的单调区间;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在如图的几何体中,四边形CDEF为正方形,四边形ABCD为等腰梯形,AB∥CD,AB=2BC,∠ABC=60°,AC⊥FB.
(1)求证:AC⊥平面FBC;
(2)求平面CBF与平面ADE所成夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在正三棱柱ABC-A1B1C1中,AB=2,点D、E分别是棱AB、BB1的中点,若DE⊥EC1,则侧棱AA1的长为(  )
A.1B.2C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

同步练习册答案