精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=lnx,$g(x)=-\frac{a}{x}+\frac{3}{2}(a>0)$
(1)当a=1时,若曲线y=f(x)在点M(x0,f(x0))处的切线与曲线y=g(x)在点P(x0,g(x0))处的切线平行,求实数x0的值;
(2)若?x∈(0,e],都有f(x)≥g(x),求实数a的取值范围.

分析 (1)把a=1导入解析式,并求出f′(x)和g′(x),根据切线平行对应的斜率相等列出方程,求出x0的值;
(2)根据条件设F(x)=f(x),再把条件进行转化,求出对应的解析式和导数,求出临界点,并根据导数与函数单调性的关系列出表格,再对a进行分类讨论,分别判断出函数的单调性,再求出对应的最小值,列出不等式求出a的范围.

解答 解:(1)把a=1代入得,g(x)=-$\frac{1}{x}$+$\frac{3}{2}$,
则f′(x)=$\frac{1}{x}$,g′(x)=$\frac{1}{{x}^{2}}$,
∵f(x)在点M (x0,f(x0))处的切线与
g(x)在点P (x0,g(x0))处的切线平行,
∴$\frac{1}{{x}_{0}}$=$\frac{1}{{{x}_{0}}^{2}}$,解得x0=1,
∴x0=1,
(2)由题意设F(x)=f(x)-g(x)=lnx+$\frac{a}{x}$-$\frac{3}{2}$,
∵?x∈(0,e],都有f(x)≥g(x),
∴只要F(x)在(0,e]上的最小值大于等于0即可,
则F′(x)=$\frac{1}{x}$-$\frac{a}{{x}^{2}}$=$\frac{x-a}{{x}^{2}}$,由F′(x)=0得,x=a,
F(x)、F′(x)随x的变化情况如下表:

x(0,a)a(a,+∞)
F′(x)-0+
F(x)递减极大值递增
当a≥e时,函数F′(x)在(0,e)上单调递减,F(e)为最小值,
∴F(e)=1+$\frac{a}{e}$-$\frac{3}{2}$≥0,得a$≤\frac{e}{2}$,∴a≥e
当a<e时,函数F(x)在(0,a)上单调递减,在(a,e)上单调递增,
则F(a)为最小值,所以F(a)=lna+$\frac{a}{a}$-$\frac{3}{2}$,得a≥$\sqrt{e}$
∴$\sqrt{e}$≤a<e,
综上所述,a≥$\sqrt{e}$.

点评 本题考查了导数的几何意义,导数与函数单调性的关系,以及恒成立问题的转化,分类讨论思想,考查了分析问题和解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD是等边三角形,底面ABCD是边长为2的菱形,∠BAD=60°,E是AD的中点,F是PC的中点.
(1)求证:EF∥平面PAB;
(2)求直线EF与平面PBE所成角的余弦值.
(3)求平面PAD与平面PBC的二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx-ax-3(a≠0)
(1)求函数f(x)的极值;
(2)若对于任意的a∈[1,2],若函数g(x)=x3+$\frac{{x}^{2}}{2}$[m-2f′(x)]在区间(a,3)上有最值,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0).
(1)如果椭圆M的离心率e=$\frac{\sqrt{3}}{2}$,经过点P(2,1).
①求椭圆M的方程;
②经过点P的两直线与椭圆M分别相交于A,B,它们的斜率分别为k1,k2.如果k1+k2=0,试问:直线AB的斜率是否为定值?并证明.
(2)如果椭圆M的a=2,b=1,点B,C分别为椭圆M的上、下顶点,过点T(t,2)(t≠0)的直线TB,TC分别与椭圆M交于E,F两点.若△TBC的面积是△TEF的面积的k倍,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$f(x)=lnx-ax+\frac{1-a}{x}-1(a∈R)$.
(1)当$0<a<\frac{1}{2}$时,求函数f(x)的单调区间;
(2)设g(x)=x2-2bx+4.当$a=\frac{1}{4}$时,若对任意$x∈[\frac{1}{e},e]$,存在x2∈[1,2],使f(x1)=g(x2),求实数b取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.函数f(x)=$\frac{a+lnx}{x}$,若曲线f(x)在点(e,f(e))处的切线与直线e2x-y+e=0垂直(其中e为自然对数的底数).
(1)求f(x)的单调区间和极值.
(2)求证:当x>1时,$\frac{f(x)}{e+1}$>$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的中心在原点,右顶点为A(2,0),其离心率与双曲线$\frac{y^2}{3}-{x^2}=1$的离心率互为倒数
(1)求椭圆的方程;
(2)已知M,N是椭圆C上的点,O为原点,直线OM与ON的斜率之积为$-\frac{1}{4}$,若动点P(x0,y0)满足$\overrightarrow{OP}=\overrightarrow{OM}+3\overrightarrow{ON}$,求证:${x_0}^2+4{y_0}^2$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在三棱锥P-ABC中,PA⊥底面ABC,BC⊥AC,∠ABC=30°,AC=1,PB=2$\sqrt{3}$,则PC与平面PAB所成余弦值是(  )
A.$\frac{\sqrt{33}}{6}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{6}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在正四面体ABCD中,平面ABC内动点P满足其到平面BCD距离与到A点距离相等,则动点P的轨迹是(  )
A.B.椭圆C.双曲线D.抛物线

查看答案和解析>>

同步练习册答案