16£®Èçͼ£¬ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬¶ÌÖáµÄÒ»¸ö¶Ëµãµ½ÓÒ½¹µãµÄ¾àÀëΪ2£®ÉèÖ±Ïßl£ºx=my+1£¨m¡Ù0£©ÓëÍÖÔ²CÏཻÓÚA£¬BÁ½µã£¬µãA¹ØÓÚxÖá¶Ô³ÆµãΪA¡ä£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôÒÔÏß¶ÎABΪֱ¾¶µÄÔ²¹ý×ø±êÔ­µãO£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨3£©ÊÔÎÊ£ºµ±m±ä»¯Ê±£¬Ö±ÏßA¡äBÓëxÖáÊÇ·ñ½»ÓÚÒ»¸ö¶¨µã£¿ÈôÊÇ£¬Çëд³ö¶¨µãµÄ×ø±ê£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Í¨¹ý¶ÌÖáµÄÒ»¸ö¶Ëµãµ½ÓÒ½¹µãµÄ¾àÀëΪ2¿ÉÖªa=2£¬½ø¶øÀûÓÃÀëÐÄÂʵÄÖµ¼ÆËã¼´µÃ½áÂÛ£»
£¨2£©Í¨¹ýABÒÔÏß¶ÎABΪֱ¾¶µÄÔ²¹ý×ø±êÔ­µãO¿ÉÖª$\overrightarrow{OA}•\overrightarrow{OB}=0$£¬Í¨¹ýÁªÁ¢Ö±ÏßlÓëÍÖÔ²·½³Ì¡¢ÀûÓÃΤ´ï¶¨Àí»¯¼òx1x2+y1y2=0£¬½ø¶ø¼ÆËã¿ÉµÃ½áÂÛ£»
£¨3£©Í¨¹ýÔÚÖ±ÏßA'BµÄ·½³Ì$\frac{{y+{y_1}}}{{{y_2}+{y_1}}}=\frac{{x-{x_1}}}{{{x_2}-{x_1}}}$ÖÐÁîy=0£¬¼ÆËã¿ÉÖªx=4£¬¼´µ±m±ä»¯Ê±£¬Ö±ÏßA'BÓëxÖá½»ÓÚ¶¨µã£¨4£¬0£©£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ$\left\{\begin{array}{l}{{b}^{2}+{c}^{2}={2}^{2}}\\{e=\frac{c}{a}=\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}=\frac{\sqrt{3}}{2}}\end{array}\right.$£¬
½âµÃ£ºa=2£¬b=1£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{x^2}{4}+{y^2}=1$£»
£¨2£©ÁªÁ¢$\left\{\begin{array}{l}{x=my+1}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬ÏûÈ¥x¡¢ÕûÀíµÃ£º£¨m2+4£©y2+2my-3=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôò$\left\{\begin{array}{l}{y_1}+{y_2}=-\frac{2m}{{{m^2}+4}}\\{y_1}{y_2}=-\frac{3}{{{m^2}+4}}\end{array}\right.$£¬
¡ßABÒÔÏß¶ÎABΪֱ¾¶µÄÔ²¹ý×ø±êÔ­µãO£¬
¡à$\overrightarrow{OA}•\overrightarrow{OB}=0$£¬¼´x1x2+y1y2=0£¬
¡à$£¨m{y_1}+1£©£¨m{y_2}+1£©+{y_1}{y_2}=0£¬£¨{m^2}+1£©{y_1}{y_2}+m£¨{y_1}+{y_2}£©+1=0$£¬
¡à$£¨{m^2}+1£©£¨-\frac{3}{{{m^2}+4}}£©+m£¨-\frac{2m}{{{m^2}+4}}£©+1=0£¬\frac{{-4{m^2}+1}}{{{m^2}+4}}=0$£¬
¼´${m^2}=\frac{1}{4}$£¬½âµÃ£º$m=¡À\frac{1}{2}$£¬
¹ÊËùÇóÖ±ÏßlµÄ·½³ÌΪ$x=\frac{1}{2}y+1»òx=-\frac{1}{2}y+1$£»
£¨3£©½áÂÛ£ºµ±m±ä»¯Ê±£¬Ö±ÏßA'BÓëxÖá½»ÓÚ¶¨µã£¨4£¬0£©£®
ÀíÓÉÈçÏ£º
ÓÉ£¨2£©Öª£ºA'£¨x1£¬-y1£©ÔòÖ±ÏßA'BµÄ·½³ÌΪ$\frac{{y+{y_1}}}{{{y_2}+{y_1}}}=\frac{{x-{x_1}}}{{{x_2}-{x_1}}}$£¬
Áîy=0£¬µÃx=$\frac{{x}_{2}-{x}_{1}}{{y}_{2}+{y}_{1}}$•y1+x1
=$\frac{£¨m{y}_{2}-m{y}_{1}£©{y}_{1}+£¨m{y}_{1}+1£©£¨{y}_{2}+{y}_{1}£©}{{y}_{2}+{y}_{1}}$
=$\frac{m{y}_{2}{y}_{1}-m{{y}_{1}}^{2}+m{y}_{2}{y}_{1}+m{{y}_{1}}^{2}+{y}_{1}+{y}_{2}}{{y}_{2}+{y}_{1}}$
=$\frac{2m{y}_{2}{y}_{1}}{{y}_{2}+{y}_{1}}$+1
=$\frac{2m•£¨-\frac{3}{{m}^{2}+4}£©}{-\frac{2m}{{m}^{2}+4}}$+1
=3+1
=4£¬
Õâ˵Ã÷£ºµ±m±ä»¯Ê±£¬Ö±ÏßA'BÓëxÖá½»ÓÚ¶¨µã£¨4£¬0£©£®

µãÆÀ ±¾ÌâÊÇÒ»µÀÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÌ⣬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èç¹û¹ØÓÚxµÄ·½³Ì$\frac{x}{6}$-$\frac{6m-1}{3}$=x-$\frac{5m-1}{2}$µÄ½â²»´óÓÚ1£¬ÇÒmÊÇÒ»¸öÕýÕûÊý£¬ÇóxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èôx¡¢yÂú×ã$\left\{\begin{array}{l}x+3y-5¡Ý0\\ x+y¡Ü7\\ x-2¡Ý0\end{array}$£¬Ôòz=x+ayµÄ×î´óֵΪ12£¬ÔòʵÊýa=2»ò-4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®¼¯ºÏA={1£¬2£¬3£¬4£¬5}ÖУ¬¹²ÓÐ31¸ö·Ç¿Õ×Ó¼¯£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚÖ±½Ç×ø±êϵÄÚ£¬µ½µã£¨1£¬0£©ºÍÖ±Ïßx=-1¾àÀëÏàµÈµÄµãµÄ¹ì¼£ÊÇÇúÏßC
£¨1£©ÇóÇúÏßCµÄ·½³Ì£®
£¨2£©ÇúÏßCµÄ½¹µãΪF£¬ÎÊ£ºÊÇ·ñ´æÔÚ¹ýFÇÒ²»´¹Ö±ÓÚxÖáµÄÖ±Ïßl£¬Ê¹lÓëÇúÏßC½»ÓÚÁ½µãP£¬Q£¬²¢ÇÒ¡÷POQµÄÃæ»ýΪ2$\sqrt{2}$£¬²¢ËµÃ÷ÀíÓÉ£¨OΪԭµã£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®¸ø³öÏÂÁÐÈý¸öÀà±È½áÂÛ£º
£¨1£©£¨ab£©n=anbnÓ루a+b£©nÀà±È£¬ÔòÓУ¨a+b£©n=an+bn£»
£¨2£©loga£¨xy£©=logax+logayÓësin£¨¦Á+¦Â£©Àà±È£¬ÔòÓÐsin£¨¦Á+¦Â£©=sin¦Ásin¦Â£»
£¨3£©£¨a+b£©2=a2+2ab+b2Ó루$\overrightarrow{a}$+$\overrightarrow{b}$£©2Àà±È£¬ÔòÓУ¨$\overrightarrow{a}$+$\overrightarrow{b}$£©2=$\overrightarrow{a}$2+2$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{b}$2£»
ÆÚÖнáÂÛÕýÈ·µÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®£®3B£®.2C£®.1D£®£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªÊýÁÐ{an}µÄͨÏʽΪan=2n+£¨-1£©n+1•£¨1+¦Ën£©£¬ÆäÖÐÊdz£Êý£¬n¡ÊN*£®
£¨I£©µ±a2=-1ʱ£¬Çó¦ËµÄÖµ£»
£¨¢ò£©ÊýÁÐ{an}ÊÇ·ñ¿ÉÄÜΪµÈ²îÊýÁУ¿Ö¤Ã÷ÄãµÄ½áÂÛ£»
£¨¢ó£©Èô¶ÔÓÚÈÎÒân¡ÊN*£¬¶¼ÓÐan£¾0£¬Çó¦ËµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªa£¾0£¬b£¾0£¬±È½ÏabbaÓëaabbµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÊµÊým£¬m2£¬1Ëù×é³ÉµÄ¼¯ºÏ£¬ÆäÔªËØ×î¶àÓÐ3¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸