精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若,求的最大值;

2)当时,讨论极值点的个数.

【答案】12时,极值点的个数为0个;时,极值点的个数为2

【解析】

1)利用导数求出单调性,从而求得的最大值;

2)先求导数,,导数的符号由分子确定,先分讨论,时,易得,当时,将看成关于的二次函数,由确定的符号,从而判断极值点的个数.

1)当时,

此时,函数定义域为

得:;由得:

所以上单调递增,在上单调递减.

所以.

2)当时,函数定义域为

时,对任意的恒成立,

上单调递减,所以此时极值点的个数为0个;

时,设

i)当,即时,

对任意的恒成立,即上单调递减,

所以此时极值点的个数为0个;

ii)当,即时,记方程的两根分别为

,所以都大于0

上有2个左右异号的零点,

所以此时极值点的个数为2.

综上所述时,极值点的个数为0个;

时,极值点的个数为2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的图象上所有点向左平移个单位,然后纵坐标不变,横坐标缩短为原来的,得到函数的图象.若为偶函数,且最小正周期为,则(

A.图象与对称B.单调递增

C.有且仅有3个解D.有仅有3个极大值点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知xy之间的几组数据如表:

x

1

2

3

4

y

1

m

n

4

如表数据中y的平均值为2.5,若某同学对m赋了三个值分别为1.522.5,得到三条线性回归直线方程分别为,对应的相关系数分别为,下列结论中错误的是(

参考公式:线性回归方程中,其中.相关系数

A.三条回归直线有共同交点B.相关系数中,最大

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系.已知直线的极坐标方程为,曲线的极坐标方程为

1)写出直线和曲线的直角坐标方程;

2)过动点且平行于的直线交曲线两点,若,求动点到直线的最近距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体中,P为线段上的动点,下列说法正确的是(

A.对任意点P平面

B.三棱锥的体积为

C.线段DP长度的最小值为

D.存在点P,使得DP与平面所成角的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,椭圆的右焦点为,过的直线相交于两点,点满足.

1)当的倾斜角为时,求直线的方程;

2)试探究在轴上是否存在定点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,曲线的方程为,定点,点是曲线上的动点, 的中点.

(1)求点的轨迹的直角坐标方程;

(2)已知直线轴的交点为,与曲线的交点为,若的中点为,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面是边长为3的正方形,平面与平面所成的角为.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次普查,为此需要抽验1000人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.

方案:将每个人的血分别化验,这时需要验1000次.

方案:按个人一组进行随机分组,把从每组个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这个人的血只需检验一次(这时认为每个人的血化验次);否则,若呈阳性,则需对这个人的血样再分别进行一次化验,这样,该组个人的血总共需要化验次.

假设此次普查中每个人的血样化验呈阳性的概率为,且这些人之间的试验反应相互独立.

1)设方案中,某组个人的每个人的血化验次数为,求的分布列;

2)设,试比较方案中,分别取234时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)

查看答案和解析>>

同步练习册答案