精英家教网 > 高中数学 > 题目详情

【题目】宜昌大剧院和宜昌奥体中心将是人们健康生活的最佳场所,若两处在同一直角坐标系中的坐标分别为;假设至喜长江大桥所在的直线方程为直线.现为方便大家出行,计划在至喜长江大桥上的点p处新增一出口通往两地,要使从 处到两地的总路程最短.

1)求点p的坐标.

2)一中高二体育特长生小陶和小陈相约某周日上午8时到9时在宜昌奥体中心会面,并约定先到者应等候另一个人一刻钟,过时即可离去,求两人能会面的概率.

【答案】1;(2

【解析】

1)根据题意,画出坐标系,计算对称点,根据两点之间线段最短,结合直线方程,即可求解;

2)根据题意知本题是几何概型,构造直角坐标系,根据面积比求解概率.

(1)由题意,如图

点关于轴的对称点为,连接轴于

最短,此时所在直线方程为

.,得

点坐标为

(2)由题意知本题是一个几何概型,

实验发生包含的所有事件对应的集合是

集合对应的面积是边长为的正方形的面积

而满足条件的事件对应的集合是

得到

两人能够会面的概率

故答案为:(1;(2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为缓减人口老年化带来的问题,中国政府在2016年1月1日作出全国统一实施全面的“二孩”政策,生“二孩”是目前中国比较流行的元素某调查机构对某校学生做了一个是否同意父母生“二孩”抽样调查,该调查机构从该校随机抽查了100名不同性别的学生,调查统计他们是同意父母生“二孩”还是反对父母生“二孩”现已得知100人中同意父母生“二孩”占,统计情况如表:

性别属性

同意父母生“二孩”

反对父母生“二孩”

合计

男生

10

女生

30

合计

100

请补充完整上述列联表;

根据以上资料你是否有把握,认为是否同意父母生“二孩”与性别有关?请说明理由.

参考公式与数据:,其中

k

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五面体中,侧面是正方形,是等腰直角三角形,点是正方形对角线的交点.

(1)证明:平面

(2)若侧面与底面垂直,求五面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设正四面体ABCD的所有棱长都为1米,有一只蚂蚁从点A开始按以下规则前进:在每一个顶点处等可能地选择通过这个顶点的三条棱之一,并且沿着这条棱爬到尽头,则它爬了4米之后恰好位于顶点A的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,则方程恰有2个不同的实根,实数取值范围__________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥底面是菱形,平面分别是的中点.

(1)求证:平面平面

(2),垂足为,斜线与平面所成的角为,求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国一带一路战略构思提出后, 某科技企业为抓住一带一路带来的机遇, 决定开发生产一款大型电子设备, 生产这种设备的年固定成本为万元, 每生产台,需另投入成本(万元), 当年产量不足台时, (万元); 当年产量不小于台时 (万元), 若每台设备售价为万元, 通过市场分析,该企业生产的电子设能全部.

(1)求年利润 (万元)年产(台)的函数关系式;

(2)年产为多少台时 ,该企业在这一电子设的生产中所获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】P为两直线l13x+4y2=0l22x+y+2=0的交点.

1)求过P点且与直线3x2y+4=0平行的直线方程;

2)求过原点且与直线l1l2围成的三角形为直角三角形的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,讨论的导函数的单调性;

(2)当时,,求的取值范围.

查看答案和解析>>

同步练习册答案