精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn=25n-2n2
(1)求证:{an}是等差数列.(2)求数列{|an|}的前n项和Tn
分析:(1)由Sn=25n-2n2.求得an,若an是关于n的一次函数则为等差数列;
(2)把|an|先去掉绝对值,再化为{an}数列求和
解答:解:(1)证明:①n=1时,a1=S1=23.
②n≥2时,an=Sn-Sn-1=(25n-2n2)-[25(n-1)-2(n-1)2]=27-4n,而n=1
适合该式.
于是{an}为等差数列.
(2)因为an=27-4n,若an>0,则n<
27
4
所以|an|=
an                (1≤n≤6)
-an             (n≥7)

当1≤n≤6时,Tn=a1+a2+an=25n-2n2
当n≥7时,Tn=a1+a2++a6-(a7+a8++an
=S6-(Sn-S6)=2n2-25n+156,
综上所知
25n-2n2           (1≤n≤6)
2n2-25n+156   (n≥7)
.
点评:本题主要考查数列的判断方法及数列求和问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案