| A. | 31 | B. | 5 | C. | $\frac{31}{16}$ | D. | $\frac{15}{8}$ |
分析 设等比数列{an}的公比为q,由于S2=$\frac{3}{2}$,a4+a5=$\frac{3}{16}$,可得a1(1+q)=$\frac{3}{2}$,${a}_{1}{q}^{3}$(1+q)=$\frac{3}{16}$,联立解出,再利用等比数列的前n项和公式即可得出.
解答 解:设等比数列{an}的公比为q,∵S2=$\frac{3}{2}$,a4+a5=$\frac{3}{16}$,
∴a1(1+q)=$\frac{3}{2}$,${a}_{1}{q}^{3}$(1+q)=$\frac{3}{16}$,
解得a1=1,q=$\frac{1}{2}$.
则S5=$\frac{1-\frac{1}{{2}^{5}}}{1-\frac{1}{2}}$=$\frac{31}{16}$.
故选:C.
点评 本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-3] | B. | [-4,1) | C. | (-3,1) | D. | (-∞,-3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$或$\sqrt{2}$ | D. | 3-$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com