精英家教网 > 高中数学 > 题目详情
17.设集合A={x|(4-x)(x+3)≤0},集合B=(x|x-1<0},则(∁RA)∩B等于(  )
A.(-∞,-3]B.[-4,1)C.(-3,1)D.(-∞,-3)

分析 化简集合A、B,求出∁RA与(∁RA)∩B即可.

解答 解:∵集合A={x|(4-x)(x+3)≤0}={x|x≤-3或x≥4}=(-∞,-3]∪[4,+∞);
集合B={x|x-1<0}={x|x<1}=(-∞,1),
∴∁RA=(-3,4),
(∁RA)∩B=(-3,1).
故选:C.

点评 本题考查了集合的化简与运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{(1+x)(2-x)}$的定义域是集合A,函数g(x)=ln(x-a)的定义域是集合B.
(1)求集合A、B;
(2)若C={x|2${\;}^{{x}^{2}-2x-3}$<1},求A∩C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,△ABC是等腰直角三角形,∠ACB=90°,AC=2a,D,E分别为AC,AB的中点,沿DE将△ADE折起,得到如图所示的四棱锥A′-BCDE,F是A′B的中点.
(1)求证:EF∥平面A′CD;
(2)当四棱锥A′-BCDE的体积取最大值时,求平面A′CD与平面A′BE夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a>0,f(x)=ax2-2x+1+ln(x+1),l是曲线y=f(x)在点P(0,f(0))处的切线,求切线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知某轮船速度为每小时10千米,燃料费为每小时30元,其余费用(不随速度变化)为每小时480元,设轮船的燃料费用与其速度的立方成正比,问轮船航行的速度为每小时多少千米时,每千米航行费用总和为最小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.证明函数f(x)=$\frac{{2}^{x}}{{2}^{x}+\sqrt{2}}$(x∈R)关于($\frac{1}{2}$,$\frac{1}{2}$)对称.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图SA⊥面ABC,AB=3,BC=4,AC=5,AE⊥SB,求证:(1)BC⊥面SAB;(2)AE⊥面SBC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若(a-2+2ai)i为实数(其中a∈R,i为虚数单位),则|$\frac{a+i}{i}$|=(  )
A.5B.1C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知由实数组成的等比数列{an}的前n项和为Sn,若S2=$\frac{3}{2}$,a4+a5=$\frac{3}{16}$,则S5=(  )
A.31B.5C.$\frac{31}{16}$D.$\frac{15}{8}$

查看答案和解析>>

同步练习册答案